Source code for torch.distributed.rpc.backend_registry
import collections
from datetime import timedelta
import enum
import torch
import torch.distributed as dist
from . import api
from . import constants as rpc_constants
BackendValue = collections.namedtuple(
"BackendValue", ["construct_rpc_backend_options_handler", "init_backend_handler"]
)
def _backend_type_repr(self):
return "BackendType." + self.name
_backend_type_doc = """
An enum class of available backends.
PyTorch ships with two builtin backends: ``BackendType.TENSORPIPE`` and
``BackendType.PROCESS_GROUP``. Additional ones can be registered using the
:func:`~torch.distributed.rpc.backend_registry.register_backend` function.
"""
# Create an enum type, `BackendType`, with empty members.
# Can't handle Function Enum API (mypy bug #9079)
BackendType = enum.Enum(value="BackendType", names=dict()) # type: ignore[misc]
# Unable to assign a function a method (mypy bug #2427)
BackendType.__repr__ = _backend_type_repr # type: ignore[assignment]
BackendType.__doc__ = _backend_type_doc
def backend_registered(backend_name):
"""
Checks if backend_name is registered as an RPC backend.
Args:
backend_name (str): string to identify the RPC backend.
Returns:
True if the backend has been registered with ``register_backend``, else
False.
"""
return backend_name in BackendType.__members__.keys()
def register_backend(
backend_name, construct_rpc_backend_options_handler, init_backend_handler
):
"""Registers a new RPC backend.
Args:
backend_name (str): backend string to identify the handler.
construct_rpc_backend_options_handler (function):
Handler that is invoked when
rpc_backend.construct_rpc_backend_options(**dict) is called.
init_backend_handler (function): Handler that is invoked when the
`_init_rpc_backend()` function is called with a backend.
This returns the agent.
"""
global BackendType
if backend_registered(backend_name):
raise RuntimeError("RPC backend {}: already registered".format(backend_name))
# Create a new enum type, `BackendType`, with extended members.
existing_enum_dict = {member.name: member.value for member in BackendType}
extended_enum_dict = dict(
{
backend_name: BackendValue(
construct_rpc_backend_options_handler=construct_rpc_backend_options_handler,
init_backend_handler=init_backend_handler,
)
},
**existing_enum_dict
)
# Can't handle Function Enum API (mypy bug #9079)
BackendType = enum.Enum(value="BackendType", names=extended_enum_dict) # type: ignore[misc]
# Unable to assign a function a method (mypy bug #2427)
BackendType.__repr__ = _backend_type_repr # type: ignore[assignment]
BackendType.__doc__ = _backend_type_doc
return BackendType[backend_name]
def construct_rpc_backend_options(
backend,
rpc_timeout=rpc_constants.DEFAULT_RPC_TIMEOUT_SEC,
init_method=rpc_constants.DEFAULT_INIT_METHOD,
**kwargs
):
return backend.value.construct_rpc_backend_options_handler(
rpc_timeout, init_method, **kwargs
)
def init_backend(backend, *args, **kwargs):
return backend.value.init_backend_handler(*args, **kwargs)
def _process_group_construct_rpc_backend_options_handler(
rpc_timeout,
init_method,
num_send_recv_threads=rpc_constants.DEFAULT_NUM_SEND_RECV_THREADS,
**kwargs
):
from . import ProcessGroupRpcBackendOptions
return ProcessGroupRpcBackendOptions(
rpc_timeout=rpc_timeout,
init_method=init_method,
num_send_recv_threads=num_send_recv_threads
)
def _init_process_group(store, rank, world_size):
# Initialize ProcessGroup.
process_group_timeout = rpc_constants.DEFAULT_PROCESS_GROUP_TIMEOUT
# We're using a bunch of private APIs here since `new_group` requires the
# default group to be initialized.
group = dist.ProcessGroupGloo(store, rank, world_size, process_group_timeout)
assert group is not None, "Failed to initialize default ProcessGroup."
if (rank != -1) and (rank != group.rank()):
raise RuntimeError(
"rank argument {} doesn't match pg rank {}".format(rank, group.rank())
)
if (world_size != -1) and (world_size != group.size()):
raise RuntimeError(
"world_size argument {} doesn't match pg size {}".format(
world_size, group.size()
)
)
return group
def _process_group_init_backend_handler(
store, name, rank, world_size, rpc_backend_options
):
from . import ProcessGroupRpcBackendOptions
from . import ProcessGroupAgent
if not isinstance(store, dist.Store):
raise TypeError("`store` must be a c10d::Store. {}".format(store))
if not isinstance(
rpc_backend_options, ProcessGroupRpcBackendOptions
):
raise TypeError(
"`rpc_backend_options` must be a `ProcessGroupRpcBackendOptions`. {}".format(
rpc_backend_options
)
)
group = _init_process_group(store, rank, world_size)
# TODO: add try-except and destroy _agent in all processes if any fails.
return ProcessGroupAgent(
store,
name,
group,
rpc_backend_options.num_send_recv_threads,
timedelta(seconds=rpc_backend_options.rpc_timeout),
)
register_backend(
"PROCESS_GROUP",
_process_group_construct_rpc_backend_options_handler,
_process_group_init_backend_handler,
)
def _tensorpipe_construct_rpc_backend_options_handler(
rpc_timeout,
init_method,
num_worker_threads=rpc_constants.DEFAULT_NUM_WORKER_THREADS,
_transports=None,
_channels=None,
**kwargs
):
from . import TensorPipeRpcBackendOptions
return TensorPipeRpcBackendOptions(
rpc_timeout=rpc_timeout,
init_method=init_method,
num_worker_threads=num_worker_threads,
_transports=_transports,
_channels=_channels,
)
def _tensorpipe_check_local_device_maps(name, options):
# Check local devices in device_maps and devices are all valid.
local_devices = set(options.devices) if options.devices else set()
device_maps = options.device_maps
for worker_name in device_maps:
device_map = device_maps[worker_name]
key_set = set(device_map.keys())
val_set = set(device_map.values())
if not all([
len(key_set) == len(device_map),
len(val_set) == len(device_map),
]):
raise ValueError(
f"Invalid device_map configuration for {worker_name}, "
f"not 1-to-1 mapping:\ndevice_maps = {device_map}"
)
local_devices.update(key_set)
if not all(
(0 <= d.index < torch.cuda.device_count() if d.type == "cuda" else True)
for d in local_devices
):
raise ValueError(
f"Invalid device in TensorPipe options on {name}:\n"
f"device_maps = {options.device_maps},\n"
f"devices = {options.devices}"
)
# detect if any worker has invalid device_map configurations, and return
# names of failed workers
def _tensorpipe_check_remote_device_maps(agent, options):
device_maps = options.device_maps
if device_maps is None:
device_maps = {}
def check_one_worker(name, device_maps, all_device_counts):
device_count = all_device_counts[name]
wrong_worker_names = set(device_maps) - set(all_device_counts)
if wrong_worker_names:
raise ValueError(f"Wrong worker names: {wrong_worker_names}")
for remote_name in all_device_counts:
remote_device_count = all_device_counts[remote_name]
if remote_name in device_maps:
device_map = device_maps[remote_name]
val_set = set(device_map.values())
if not all(
(0 <= d.index < remote_device_count if d.type == "cuda" else True)
for d in val_set
):
raise ValueError(
f"Invalid device_map configuration on {name} "
f"for {remote_name}, remote device out of range:\n"
f"device_maps = {device_maps}"
)
gathered = api._all_gather([torch.cuda.device_count(), device_maps])
all_device_counts = {name: gathered[name][0] for name in gathered}
all_device_maps = {name: gathered[name][1] for name in gathered}
for worker_name in all_device_maps:
worker_device_maps = all_device_maps[worker_name]
check_one_worker(worker_name, worker_device_maps, all_device_counts)
# passed all checked, construct reverse mapping for return values
reverse_device_maps = {}
local_name = api.get_worker_info().name
for worker_name in all_device_maps:
remote_device_maps = all_device_maps[worker_name]
if local_name in remote_device_maps:
remote_device_map = remote_device_maps[local_name]
reverse_device_maps[worker_name] = {
remote_device_map[k]: k for k in remote_device_map
}
agent._set_reverse_device_maps(reverse_device_maps)
def _tensorpipe_init_backend_handler(store, name, rank, world_size, rpc_backend_options):
from . import TensorPipeRpcBackendOptions
from . import TensorPipeAgent
if not isinstance(store, dist.Store):
raise TypeError("`store` must be a c10d::Store. {}".format(store))
if not isinstance(
rpc_backend_options, TensorPipeRpcBackendOptions
):
raise TypeError(
"`rpc_backend_options` must be a `TensorPipeRpcBackendOptions`. {}".format(
rpc_backend_options
)
)
if torch.cuda.is_available():
# It's necessary to initialize PyTorch CUDA states here (e.g.,
# CUDACachingAllocator). If this is missing, we could hit errors like
# "allocator not initialized", because other processes might send
# CUDA-related RPC request to this process before user code in this
# process initializes its PyTorch CUDA states.
torch.cuda.init()
_tensorpipe_check_local_device_maps(name, rpc_backend_options)
else:
if len(rpc_backend_options.devices) > 0:
raise ValueError(
f"CUDA is not available on {name}, but "
f"devices = {rpc_backend_options.devices}"
)
# The agent's join method is required to behave like a barrier and perform
# collective operations, for which it relies on a process group, instead of
# re-implementing this on top of RPCs.
group = _init_process_group(store, rank, world_size)
# TODO: add try-except and destroy _agent in all processes if any fails.
agent = TensorPipeAgent(
store, name, rank, world_size, group, rpc_backend_options
)
api._init_rpc_states(agent)
try:
_tensorpipe_check_remote_device_maps(agent, rpc_backend_options)
agent.join()
except Exception:
api.shutdown()
raise
return agent
register_backend(
"TENSORPIPE",
_tensorpipe_construct_rpc_backend_options_handler,
_tensorpipe_init_backend_handler,
)