Source code for torch
r"""
The torch package contains data structures for multi-dimensional
tensors and defines mathematical operations over these tensors.
Additionally, it provides many utilities for efficient serializing of
Tensors and arbitrary types, and other useful utilities.
It has a CUDA counterpart, that enables you to run your tensor computations
on an NVIDIA GPU with compute capability >= 3.0.
"""
import os
import sys
import platform
import textwrap
import ctypes
import warnings
if sys.version_info < (3,):
raise Exception("Python 2 has reached end-of-life and is no longer supported by PyTorch.")
from ._utils import _import_dotted_name
from ._utils_internal import get_file_path, prepare_multiprocessing_environment, \
USE_RTLD_GLOBAL_WITH_LIBTORCH, USE_GLOBAL_DEPS
# TODO(torch_deploy) figure out how to freeze version.py in fbcode build
if sys.executable == 'torch_deploy':
__version__ = "torch-deploy-1.8"
else:
from .version import __version__ as __version__
from ._six import string_classes as _string_classes
from typing import Set, Type, TYPE_CHECKING
__all__ = [
'typename', 'is_tensor', 'is_storage', 'set_default_tensor_type',
'set_rng_state', 'get_rng_state', 'manual_seed', 'initial_seed', 'seed',
'save', 'load', 'set_printoptions', 'chunk', 'split', 'stack', 'matmul',
'no_grad', 'enable_grad', 'rand', 'randn', 'inference_mode',
'DoubleStorage', 'FloatStorage', 'LongStorage', 'IntStorage',
'ShortStorage', 'CharStorage', 'ByteStorage', 'BoolStorage',
'DoubleTensor', 'FloatTensor', 'LongTensor', 'IntTensor',
'ShortTensor', 'CharTensor', 'ByteTensor', 'BoolTensor', 'Tensor',
'lobpcg', 'use_deterministic_algorithms', 'set_deterministic',
'are_deterministic_algorithms_enabled', 'is_deterministic',
'set_warn_always', 'is_warn_always_enabled',
]
################################################################################
# Load the extension module
################################################################################
if sys.platform == 'win32':
pfiles_path = os.getenv('ProgramFiles', 'C:\\Program Files')
py_dll_path = os.path.join(sys.exec_prefix, 'Library', 'bin')
th_dll_path = os.path.join(os.path.dirname(__file__), 'lib')
# When users create a virtualenv that inherits the base environment,
# we will need to add the corresponding library directory into
# DLL search directories. Otherwise, it will rely on `PATH` which
# is dependent on user settings.
if sys.exec_prefix != sys.base_exec_prefix:
base_py_dll_path = os.path.join(sys.base_exec_prefix, 'Library', 'bin')
else:
base_py_dll_path = ''
dll_paths = list(filter(os.path.exists, [th_dll_path, py_dll_path, base_py_dll_path]))
if all([not os.path.exists(os.path.join(p, 'nvToolsExt64_1.dll')) for p in dll_paths]):
nvtoolsext_dll_path = os.path.join(
os.getenv('NVTOOLSEXT_PATH', os.path.join(pfiles_path, 'NVIDIA Corporation', 'NvToolsExt')), 'bin', 'x64')
else:
nvtoolsext_dll_path = ''
from .version import cuda as cuda_version
import glob
if cuda_version and all([not glob.glob(os.path.join(p, 'cudart64*.dll')) for p in dll_paths]):
cuda_version_1 = cuda_version.replace('.', '_')
cuda_path_var = 'CUDA_PATH_V' + cuda_version_1
default_path = os.path.join(pfiles_path, 'NVIDIA GPU Computing Toolkit', 'CUDA', 'v' + cuda_version)
cuda_path = os.path.join(os.getenv(cuda_path_var, default_path), 'bin')
else:
cuda_path = ''
dll_paths.extend(filter(os.path.exists, [nvtoolsext_dll_path, cuda_path]))
kernel32 = ctypes.WinDLL('kernel32.dll', use_last_error=True)
with_load_library_flags = hasattr(kernel32, 'AddDllDirectory')
prev_error_mode = kernel32.SetErrorMode(0x0001)
kernel32.LoadLibraryW.restype = ctypes.c_void_p
if with_load_library_flags:
kernel32.AddDllDirectory.restype = ctypes.c_void_p
kernel32.LoadLibraryExW.restype = ctypes.c_void_p
for dll_path in dll_paths:
if sys.version_info >= (3, 8):
os.add_dll_directory(dll_path)
elif with_load_library_flags:
res = kernel32.AddDllDirectory(dll_path)
if res is None:
err = ctypes.WinError(ctypes.get_last_error())
err.strerror += f' Error adding "{dll_path}" to the DLL directories.'
raise err
try:
ctypes.CDLL('vcruntime140.dll')
ctypes.CDLL('msvcp140.dll')
if cuda_version not in ('9.2', '10.0'):
ctypes.CDLL('vcruntime140_1.dll')
except OSError:
print('''Microsoft Visual C++ Redistributable is not installed, this may lead to the DLL load failure.
It can be downloaded at https://aka.ms/vs/16/release/vc_redist.x64.exe''')
dlls = glob.glob(os.path.join(th_dll_path, '*.dll'))
path_patched = False
for dll in dlls:
is_loaded = False
if with_load_library_flags:
res = kernel32.LoadLibraryExW(dll, None, 0x00001100)
last_error = ctypes.get_last_error()
if res is None and last_error != 126:
err = ctypes.WinError(last_error)
err.strerror += f' Error loading "{dll}" or one of its dependencies.'
raise err
elif res is not None:
is_loaded = True
if not is_loaded:
if not path_patched:
os.environ['PATH'] = ';'.join(dll_paths + [os.environ['PATH']])
path_patched = True
res = kernel32.LoadLibraryW(dll)
if res is None:
err = ctypes.WinError(ctypes.get_last_error())
err.strerror += f' Error loading "{dll}" or one of its dependencies.'
raise err
kernel32.SetErrorMode(prev_error_mode)
# See Note [Global dependencies]
def _load_global_deps():
if platform.system() == 'Windows' or sys.executable == 'torch_deploy':
return
lib_name = 'libtorch_global_deps' + ('.dylib' if platform.system() == 'Darwin' else '.so')
here = os.path.abspath(__file__)
lib_path = os.path.join(os.path.dirname(here), 'lib', lib_name)
ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL)
if (USE_RTLD_GLOBAL_WITH_LIBTORCH or os.getenv('TORCH_USE_RTLD_GLOBAL')) and \
platform.system() != 'Windows':
# Do it the hard way. You might want to load libtorch with RTLD_GLOBAL in a
# few circumstances:
#
# 1. You're in a build environment (e.g., fbcode) where
# libtorch_global_deps is not available, but you still need
# to get mkl to link in with RTLD_GLOBAL or it will just
# not work.
#
# 2. You're trying to run PyTorch under UBSAN and you need
# to ensure that only one copy of libtorch is loaded, so
# vptr checks work properly
#
# If you're using this setting, you must verify that all the libraries
# you load consistently use the same libstdc++, or you may have
# mysterious segfaults.
#
import os as _dl_flags
if not hasattr(_dl_flags, 'RTLD_GLOBAL') or not hasattr(_dl_flags, 'RTLD_LAZY'):
try:
# next try if DLFCN exists
import DLFCN as _dl_flags # type: ignore[import, no-redef]
except ImportError:
# as a last attempt, use compile-time constants
import torch._dl as _dl_flags # type: ignore[import, no-redef]
old_flags = sys.getdlopenflags()
sys.setdlopenflags(_dl_flags.RTLD_GLOBAL | _dl_flags.RTLD_LAZY)
from torch._C import * # noqa: F403
sys.setdlopenflags(old_flags)
del old_flags
del _dl_flags
else:
# Easy way. You want this most of the time, because it will prevent
# C++ symbols from libtorch clobbering C++ symbols from other
# libraries, leading to mysterious segfaults.
#
# If building in an environment where libtorch_global_deps isn't available
# like parts of fbsource, but where RTLD_GLOBAL causes segfaults, you will
# want USE_RTLD_GLOBAL_WITH_LIBTORCH = False and USE_GLOBAL_DEPS = False
#
# See Note [Global dependencies]
if USE_GLOBAL_DEPS:
_load_global_deps()
from torch._C import * # noqa: F403
# Appease the type checker; ordinarily this binding is inserted by the
# torch._C module initialization code in C
if TYPE_CHECKING:
import torch._C as _C
# Check to see if we can load C extensions, and if not provide some guidance
# on what the problem might be.
try:
# _initExtension is chosen (arbitrarily) as a sentinel.
from torch._C import _initExtension
except ImportError:
import torch._C as _C_for_compiled_check
# The __file__ check only works for Python 3.7 and above.
if sys.version_info >= (3, 7) and _C_for_compiled_check.__file__ is None:
raise ImportError(textwrap.dedent('''
Failed to load PyTorch C extensions:
It appears that PyTorch has loaded the `torch/_C` folder
of the PyTorch repository rather than the C extensions which
are expected in the `torch._C` namespace. This can occur when
using the `install` workflow. e.g.
$ python setup.py install && python -c "import torch"
This error can generally be solved using the `develop` workflow
$ python setup.py develop && python -c "import torch" # This should succeed
or by running Python from a different directory.
''').strip()) from None
raise # If __file__ is not None the cause is unknown, so just re-raise.
__all__ += [name for name in dir(_C)
if name[0] != '_' and
not name.endswith('Base')]
if not TYPE_CHECKING:
# issue 38137 and python issue 43367. Submodules of a C extension are
# non-standard, and attributes of those submodules cannot be pickled since
# pickle expect to be able to import them as "from _C.sub import attr"
# which fails with "_C is not a package
for attr in dir(_C):
candidate = getattr(_C, attr)
if type(candidate) is type(_C):
# submodule
if f'torch._C.{attr}' not in sys.modules:
sys.modules[f'torch._C.{attr}'] = candidate
################################################################################
# Define basic utilities
################################################################################
def typename(o):
if isinstance(o, torch.Tensor):
return o.type()
module = ''
class_name = ''
if hasattr(o, '__module__') and o.__module__ != 'builtins' \
and o.__module__ != '__builtin__' and o.__module__ is not None:
module = o.__module__ + '.'
if hasattr(o, '__qualname__'):
class_name = o.__qualname__
elif hasattr(o, '__name__'):
class_name = o.__name__
else:
class_name = o.__class__.__name__
return module + class_name
[docs]def is_tensor(obj):
r"""Returns True if `obj` is a PyTorch tensor.
Note that this function is simply doing ``isinstance(obj, Tensor)``.
Using that ``isinstance`` check is better for typechecking with mypy,
and more explicit - so it's recommended to use that instead of
``is_tensor``.
Args:
obj (Object): Object to test
Example::
>>> x=torch.tensor([1,2,3])
>>> torch.is_tensor(x)
True
"""
return isinstance(obj, torch.Tensor)
[docs]def is_storage(obj):
r"""Returns True if `obj` is a PyTorch storage object.
Args:
obj (Object): Object to test
"""
return type(obj) in _storage_classes
def set_default_tensor_type(t):
r"""Sets the default ``torch.Tensor`` type to floating point tensor type
``t``. This type will also be used as default floating point type for
type inference in :func:`torch.tensor`.
The default floating point tensor type is initially ``torch.FloatTensor``.
Args:
t (type or string): the floating point tensor type or its name
Example::
>>> torch.tensor([1.2, 3]).dtype # initial default for floating point is torch.float32
torch.float32
>>> torch.set_default_tensor_type(torch.DoubleTensor)
>>> torch.tensor([1.2, 3]).dtype # a new floating point tensor
torch.float64
"""
if isinstance(t, _string_classes):
t = _import_dotted_name(t)
_C._set_default_tensor_type(t)
def set_default_dtype(d):
r"""Sets the default floating point dtype to :attr:`d`.
This dtype is:
1. The inferred dtype for python floats in :func:`torch.tensor`.
2. Used to infer dtype for python complex numbers. The default complex dtype is set to
``torch.complex128`` if default floating point dtype is ``torch.float64``,
otherwise it's set to ``torch.complex64``
The default floating point dtype is initially ``torch.float32``.
Args:
d (:class:`torch.dtype`): the floating point dtype to make the default
Example:
>>> # initial default for floating point is torch.float32
>>> torch.tensor([1.2, 3]).dtype
torch.float32
>>> # initial default for floating point is torch.complex64
>>> torch.tensor([1.2, 3j]).dtype
torch.complex64
>>> torch.set_default_dtype(torch.float64)
>>> torch.tensor([1.2, 3]).dtype # a new floating point tensor
torch.float64
>>> torch.tensor([1.2, 3j]).dtype # a new complex tensor
torch.complex128
"""
_C._set_default_dtype(d)
def use_deterministic_algorithms(mode):
r""" Sets whether PyTorch operations must use "deterministic"
algorithms. That is, algorithms which, given the same input, and when
run on the same software and hardware, always produce the same output.
When enabled, operations will use deterministic algorithms when available,
and if only nondeterministic algorithms are available they will throw a
:class:`RuntimeError` when called.
The following normally-nondeterministic operations will act
deterministically when ``mode=True``:
* :class:`torch.nn.Conv1d` when called on CUDA tensor
* :class:`torch.nn.Conv2d` when called on CUDA tensor
* :class:`torch.nn.Conv3d` when called on CUDA tensor
* :class:`torch.nn.ConvTranspose1d` when called on CUDA tensor
* :class:`torch.nn.ConvTranspose2d` when called on CUDA tensor
* :class:`torch.nn.ConvTranspose3d` when called on CUDA tensor
* :func:`torch.bmm` when called on sparse-dense CUDA tensors
* :func:`torch.Tensor.__getitem__` when attempting to differentiate a CPU tensor
and the index is a list of tensors
* :func:`torch.Tensor.index_put` with ``accumulate=False``
* :func:`torch.Tensor.index_put` with ``accumulate=True`` when called on a CPU
tensor
* :func:`torch.Tensor.put_` with ``accumulate=True`` when called on a CPU
tensor
* :func:`torch.gather` when ``input`` dimension is one and called
on a CUDA tensor that requires grad
* :func:`torch.index_add` when called on CUDA tensor
* :func:`torch.index_select` when attempting to differentiate a CUDA tensor
* :func:`torch.repeat_interleave` when attempting to differentiate a CUDA tensor
* :func:`torch.Tensor.index_copy` when called on a CPU or CUDA tensor
The following normally-nondeterministic operations will throw a
:class:`RuntimeError` when ``mode=True``:
* :class:`torch.nn.AvgPool3d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.AdaptiveAvgPool2d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.AdaptiveAvgPool3d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.MaxPool3d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.AdaptiveMaxPool2d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.FractionalMaxPool2d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.FractionalMaxPool3d` when attempting to differentiate a CUDA tensor
* :func:`torch.nn.functional.interpolate` when attempting to differentiate a CUDA tensor
and one of the following modes is used:
- ``linear``
- ``bilinear``
- ``bicubic``
- ``trilinear``
* :class:`torch.nn.ReflectionPad1d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.ReflectionPad2d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.ReplicationPad1d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.ReplicationPad2d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.ReplicationPad3d` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.NLLLoss` when called on a CUDA tensor
* :class:`torch.nn.CTCLoss` when attempting to differentiate a CUDA tensor
* :class:`torch.nn.EmbeddingBag` when attempting to differentiate a CUDA tensor when
``mode='max'``
* :func:`torch.Tensor.scatter_add_` when called on a CUDA tensor
* :func:`torch.Tensor.put_` when ``accumulate=False``
* :func:`torch.Tensor.put_` when ``accumulate=True`` and called on a CUDA tensor
* :func:`torch.histc` when called on a CUDA tensor
* :func:`torch.bincount` when called on a CUDA tensor
* :func:`torch.kthvalue` with called on a CUDA tensor
* :func:`torch.median` with indices output when called on a CUDA tensor
* :func:`torch.gather` when ``input`` dimension is larger than one
and called on a CUDA tensor that requires grad
* :func:`torch.nn.functional.grid_sample` when attempting to differentiate a CUDA tensor
A handful of CUDA operations are nondeterministic if the CUDA version is
10.2 or greater, unless the environment variable ``CUBLAS_WORKSPACE_CONFIG=:4096:8``
or ``CUBLAS_WORKSPACE_CONFIG=:16:8`` is set. See the CUDA documentation for more
details: `<https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility>`_
If one of these environment variable configurations is not set, a :class:`RuntimeError`
will be raised from these operations when called with CUDA tensors:
* :func:`torch.mm`
* :func:`torch.mv`
* :func:`torch.bmm`
Note that deterministic operations tend to have worse performance than
nondeterministic operations.
.. note::
This flag does not detect or prevent nondeterministic behavior caused
by calling an inplace operation on a tensor with an internal memory
overlap or by giving such a tensor as the :attr:`out` argument for an
operation. In these cases, multiple writes of different data may target
a single memory location, and the order of writes is not guaranteed.
Args:
mode (:class:`bool`): If True, makes potentially nondeterministic
operations switch to a deterministic algorithm or throw a runtime
error. If False, allows nondeterministic operations.
Example::
>>> torch.use_deterministic_algorithms(True)
# Forward mode nondeterministic error
>>> torch.randn(10).index_copy(0, torch.tensor([0]), torch.randn(1))
...
RuntimeError: index_copy does not have a deterministic implementation...
# Backward mode nondeterministic error
>>> torch.randn(10, requires_grad=True, device='cuda').index_select(0, torch.tensor([0], device='cuda')).backward()
...
RuntimeError: index_add_cuda_ does not have a deterministic implementation...
"""
_C._set_deterministic_algorithms(mode)
def set_deterministic(d):
r"""This function is deprecated and will be removed in a future release.
Please use :func:`torch.use_deterministic_algorithms` instead.
"""
warnings.warn((
"torch.set_deterministic is deprecated and will be removed in a future "
"release. Please use torch.use_deterministic_algorithms instead"))
use_deterministic_algorithms(d)
def are_deterministic_algorithms_enabled():
r"""Returns True if the global deterministic flag is turned on. Refer to
:func:`torch.use_deterministic_algorithms` documentation for more details.
"""
return _C._get_deterministic_algorithms()
def is_deterministic():
r"""This function is deprecated and will be removed in a future release.
Please use :func:`torch.are_deterministic_algorithms_enabled` instead.
"""
warnings.warn((
"torch.is_deterministic is deprecated and will be removed in a future "
"release. Please use torch.are_deterministic_algorithms_enabled instead"))
return are_deterministic_algorithms_enabled()
def set_warn_always(b):
r"""When this flag is False (default) then some PyTorch warnings may only
appear once per process. This helps avoid excessive warning information.
Setting it to True causes these warnings to always appear, which may be
helpful when debugging.
Args:
b (:class:`bool`): If True, force warnings to always be emitted
If False, set to the default behaviour
"""
_C._set_warnAlways(b)
[docs]def is_warn_always_enabled():
r"""Returns True if the global warn_always flag is turned on. Refer to
:func:`torch.set_warn_always` documentation for more details.
"""
return _C._get_warnAlways()
################################################################################
# Define Storage and Tensor classes
################################################################################
from ._tensor import Tensor
from .storage import _StorageBase
class DoubleStorage(_C.DoubleStorageBase, _StorageBase):
pass
class FloatStorage(_C.FloatStorageBase, _StorageBase):
pass
class HalfStorage(_C.HalfStorageBase, _StorageBase):
pass
class LongStorage(_C.LongStorageBase, _StorageBase):
pass
class IntStorage(_C.IntStorageBase, _StorageBase):
pass
class ShortStorage(_C.ShortStorageBase, _StorageBase):
pass
class CharStorage(_C.CharStorageBase, _StorageBase):
pass
class ByteStorage(_C.ByteStorageBase, _StorageBase):
pass
class BoolStorage(_C.BoolStorageBase, _StorageBase):
pass
class BFloat16Storage(_C.BFloat16StorageBase, _StorageBase):
pass
class ComplexDoubleStorage(_C.ComplexDoubleStorageBase, _StorageBase):
pass
class ComplexFloatStorage(_C.ComplexFloatStorageBase, _StorageBase):
pass
class QUInt8Storage(_C.QUInt8StorageBase, _StorageBase):
pass
class QInt8Storage(_C.QInt8StorageBase, _StorageBase):
pass
class QInt32Storage(_C.QInt32StorageBase, _StorageBase):
pass
class QUInt4x2Storage(_C.QUInt4x2StorageBase, _StorageBase):
pass
_storage_classes = {
DoubleStorage, FloatStorage, LongStorage, IntStorage, ShortStorage,
CharStorage, ByteStorage, HalfStorage, BoolStorage, QUInt8Storage, QInt8Storage,
QInt32Storage, BFloat16Storage, ComplexFloatStorage, ComplexDoubleStorage, QUInt4x2Storage
}
# The _tensor_classes set is initialized by the call to _C._initialize_tensor_type_bindings()
_tensor_classes: Set[Type] = set()
# If you edit these imports, please update torch/__init__.py.in as well
from .random import set_rng_state, get_rng_state, manual_seed, initial_seed, seed
from .serialization import save, load
from ._tensor_str import set_printoptions
################################################################################
# Initialize extension
################################################################################
def manager_path():
if platform.system() == 'Windows' or sys.executable == 'torch_deploy':
return b""
path = get_file_path('torch', 'bin', 'torch_shm_manager')
prepare_multiprocessing_environment(get_file_path('torch'))
if not os.path.exists(path):
raise RuntimeError("Unable to find torch_shm_manager at " + path)
return path.encode('utf-8')
# Shared memory manager needs to know the exact location of manager executable
_C._initExtension(manager_path())
del manager_path
# Appease the type checker: it can't deal with direct setting of globals().
# Note that we will see "too many" functions when reexporting this way; there
# is not a good way to fix this problem. Perhaps, try to redesign VariableFunctions
# so that this import is good enough
if TYPE_CHECKING:
# Some type signatures pulled in from _VariableFunctions here clash with
# signatures already imported. For now these clashes are ignored; see
# PR #43339 for details.
from torch._C._VariableFunctions import * # type: ignore[misc] # noqa: F403
for name in dir(_C._VariableFunctions):
if name.startswith('__'):
continue
globals()[name] = getattr(_C._VariableFunctions, name)
__all__.append(name)
################################################################################
# Import interface functions defined in Python
################################################################################
# needs to be after the above ATen bindings so we can overwrite from Python side
from .functional import * # noqa: F403
################################################################################
# Remove unnecessary members
################################################################################
del DoubleStorageBase
del FloatStorageBase
del LongStorageBase
del IntStorageBase
del ShortStorageBase
del CharStorageBase
del ByteStorageBase
del BoolStorageBase
del QUInt8StorageBase
del BFloat16StorageBase
del ComplexDoubleStorageBase
del ComplexFloatStorageBase
del QUInt4x2StorageBase
################################################################################
# Define _assert
################################################################################
# needs to be before the submodule imports to avoid circular dependencies
def _assert(condition, message):
r"""A wrapper around Python's assert which is symbolically traceable.
"""
from .overrides import has_torch_function, handle_torch_function
if type(condition) is not torch.Tensor and has_torch_function((condition,)):
return handle_torch_function(_assert, (condition,), condition, message)
assert condition, message
################################################################################
# Import most common subpackages
################################################################################
# Use the redundant form so that type checkers know that these are a part of
# the public API. The "regular" import lines are there solely for the runtime
# side effect of adding to the imported module's members for other users.
from torch import cuda as cuda
from torch import autograd as autograd
from torch.autograd import (
no_grad as no_grad,
enable_grad as enable_grad,
set_grad_enabled as set_grad_enabled,
inference_mode as inference_mode,
)
from torch import fft as fft
from torch import futures as futures
from torch import nn as nn
import torch.nn.intrinsic
import torch.nn.quantizable
import torch.nn.quantized
from torch import optim as optim
import torch.optim._multi_tensor
from torch import multiprocessing as multiprocessing
from torch import sparse as sparse
from torch import special as special
import torch.utils.backcompat
from torch import onnx as onnx
from torch import jit as jit
from torch import linalg as linalg
from torch import hub as hub
from torch import random as random
from torch import distributions as distributions
from torch import testing as testing
import torch.backends.cuda
import torch.backends.mkl
import torch.backends.mkldnn
import torch.backends.openmp
import torch.backends.quantized
from torch import quantization as quantization
import torch.utils.data
from torch import __config__ as __config__
from torch import __future__ as __future__
from torch import profiler as profiler
_C._init_names(list(torch._storage_classes))
# attach docstrings to torch and tensor functions
from . import _torch_docs, _tensor_docs, _storage_docs
del _torch_docs, _tensor_docs, _storage_docs
def compiled_with_cxx11_abi():
r"""Returns whether PyTorch was built with _GLIBCXX_USE_CXX11_ABI=1"""
return _C._GLIBCXX_USE_CXX11_ABI
# Import the ops "namespace"
from torch._ops import ops
from torch._classes import classes
# Import the quasi random sampler
from torch import quasirandom as quasirandom
# If you are seeing this, it means that this call site was not checked if
# the memory format could be preserved, and it was switched to old default
# behaviour of contiguous
legacy_contiguous_format = contiguous_format
# Register fork handler to initialize OpenMP in child processes (see gh-28389)
from torch.multiprocessing._atfork import register_after_fork
register_after_fork(torch.get_num_threads)
del register_after_fork
# Import tools that require fully imported torch (for applying
# torch.jit.script as a decorator, for instance):
from ._lobpcg import lobpcg as lobpcg
# These were previously defined in native_functions.yaml and appeared on the
# `torch` namespace, but we moved them to c10 dispatch to facilitate custom
# class usage. We add these lines here to preserve backward compatibility.
quantized_lstm = torch.ops.aten.quantized_lstm
quantized_gru = torch.ops.aten.quantized_gru