Shortcuts

Source code for torch.distributed.algorithms.ddp_comm_hooks.default_hooks

from typing import Any, Callable

import torch
import torch.distributed as dist


def _allreduce_fut(
    process_group: dist.ProcessGroup, tensor: torch.Tensor
) -> torch.futures.Future:
    group_to_use = process_group if process_group is not None else dist.group.WORLD

    "Averages the input gradient tensor by allreduce and returns a future."
    fut = dist.all_reduce(tensor, group=group_to_use, async_op=True).get_future()

    def div_by_group_size(fut):
        return [fut.value()[0].div_(group_to_use.size())]

    return fut.then(div_by_group_size)


[docs]def allreduce_hook( process_group: dist.ProcessGroup, bucket: dist.GradBucket ) -> torch.futures.Future: """ This DDP communication hook just calls ``allreduce`` using ``GradBucket`` tensors. Once gradient tensors are aggregated across all workers, its ``then`` callback takes the mean and returns the result. If user registers this hook, DDP results is expected to be same as the case where no hook was registered. Hence, this won't change behavior of DDP and user can use this as a reference or modify this hook to log useful information or any other purposes while unaffecting DDP behavior. Example:: >>> ddp_model.register_comm_hook(process_group, allreduce_hook) """ return _allreduce_fut(process_group, bucket.get_tensor())
[docs]def fp16_compress_hook( process_group: dist.ProcessGroup, bucket: dist.GradBucket ) -> torch.futures.Future: """ This DDP communication hook implements a simple gradient compression approach that casts ``GradBucket`` tensors to half-precision floating-point format (``torch.float16``) and then divides it by the process group size. It allreduces those ``float16`` gradient tensors. Once compressed gradient tensors are allreduced, the chained callback ``decompress`` casts it back to the input data type (such as ``float32``). Example:: >>> ddp_model.register_comm_hook(process_group, fp16_compress_hook) """ group_to_use = process_group if process_group is not None else dist.group.WORLD world_size = group_to_use.size() compressed_tensor = bucket.get_tensor().to(torch.float16).div_(world_size) fut = dist.all_reduce( compressed_tensor, group=group_to_use, async_op=True ).get_future() def decompress(fut): decompressed_tensor = bucket.get_tensor() # Decompress in place to reduce the peak memory. # See: https://github.com/pytorch/pytorch/issues/45968 decompressed_tensor.copy_(fut.value()[0]) return [decompressed_tensor] return fut.then(decompress)
[docs]def fp16_compress_wrapper( hook: Callable[[Any, dist.GradBucket], torch.futures.Future] ) -> Callable[[Any, dist.GradBucket], torch.futures.Future]: """ This wrapper casts the input gradient tensors of a given DDP communication hook to half-precision floating point format (``torch.float16``), and casts the resulting tensors of the given hook back to the input data type, such as ``float32``. Therefore, ``fp16_compress_hook`` is equivalent to ``fp16_compress_wrapper(allreduce_hook)``. Example:: >>> state = PowerSGDState(process_group=process_group, matrix_approximation_rank=1, start_powerSGD_iter=10) >>> ddp_model.register_comm_hook(state, fp16_compress_wrapper(powerSGD_hook)) """ def fp16_compress_wrapper_hook( hook_state, bucket: dist.GradBucket ) -> torch.futures.Future: # Cast bucket tensor to the FP16. bucket.set_tensor(bucket.get_tensor().to(torch.float16)) fut = hook(hook_state, bucket) def decompress(fut): decompressed_tensor = bucket.get_tensor() # Decompress in place to reduce the peak memory. # See: https://github.com/pytorch/pytorch/issues/45968 decompressed_tensor.copy_(fut.value()[0]) return [decompressed_tensor] # Decompress after hook has run. return fut.then(decompress) return fp16_compress_wrapper_hook

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources