Shortcuts

Source code for torch._tensor_str

import math
import torch
from torch._six import inf
from typing import Optional


class __PrinterOptions(object):
    precision: int = 4
    threshold: float = 1000
    edgeitems: int = 3
    linewidth: int = 80
    sci_mode: Optional[bool] = None


PRINT_OPTS = __PrinterOptions()


# We could use **kwargs, but this will give better docs
[docs]def set_printoptions( precision=None, threshold=None, edgeitems=None, linewidth=None, profile=None, sci_mode=None ): r"""Set options for printing. Items shamelessly taken from NumPy Args: precision: Number of digits of precision for floating point output (default = 4). threshold: Total number of array elements which trigger summarization rather than full `repr` (default = 1000). edgeitems: Number of array items in summary at beginning and end of each dimension (default = 3). linewidth: The number of characters per line for the purpose of inserting line breaks (default = 80). Thresholded matrices will ignore this parameter. profile: Sane defaults for pretty printing. Can override with any of the above options. (any one of `default`, `short`, `full`) sci_mode: Enable (True) or disable (False) scientific notation. If None (default) is specified, the value is defined by `torch._tensor_str._Formatter`. This value is automatically chosen by the framework. """ if profile is not None: if profile == "default": PRINT_OPTS.precision = 4 PRINT_OPTS.threshold = 1000 PRINT_OPTS.edgeitems = 3 PRINT_OPTS.linewidth = 80 elif profile == "short": PRINT_OPTS.precision = 2 PRINT_OPTS.threshold = 1000 PRINT_OPTS.edgeitems = 2 PRINT_OPTS.linewidth = 80 elif profile == "full": PRINT_OPTS.precision = 4 PRINT_OPTS.threshold = inf PRINT_OPTS.edgeitems = 3 PRINT_OPTS.linewidth = 80 if precision is not None: PRINT_OPTS.precision = precision if threshold is not None: PRINT_OPTS.threshold = threshold if edgeitems is not None: PRINT_OPTS.edgeitems = edgeitems if linewidth is not None: PRINT_OPTS.linewidth = linewidth PRINT_OPTS.sci_mode = sci_mode
class _Formatter(object): def __init__(self, tensor): self.floating_dtype = tensor.dtype.is_floating_point self.int_mode = True self.sci_mode = False self.max_width = 1 with torch.no_grad(): tensor_view = tensor.reshape(-1) if not self.floating_dtype: for value in tensor_view: value_str = '{}'.format(value) self.max_width = max(self.max_width, len(value_str)) else: nonzero_finite_vals = torch.masked_select(tensor_view, torch.isfinite(tensor_view) & tensor_view.ne(0)) if nonzero_finite_vals.numel() == 0: # no valid number, do nothing return # Convert to double for easy calculation. HalfTensor overflows with 1e8, and there's no div() on CPU. nonzero_finite_abs = nonzero_finite_vals.abs().double() nonzero_finite_min = nonzero_finite_abs.min().double() nonzero_finite_max = nonzero_finite_abs.max().double() for value in nonzero_finite_vals: if value != torch.ceil(value): self.int_mode = False break if self.int_mode: # in int_mode for floats, all numbers are integers, and we append a decimal to nonfinites # to indicate that the tensor is of floating type. add 1 to the len to account for this. if nonzero_finite_max / nonzero_finite_min > 1000. or nonzero_finite_max > 1.e8: self.sci_mode = True for value in nonzero_finite_vals: value_str = ('{{:.{}e}}').format(PRINT_OPTS.precision).format(value) self.max_width = max(self.max_width, len(value_str)) else: for value in nonzero_finite_vals: value_str = ('{:.0f}').format(value) self.max_width = max(self.max_width, len(value_str) + 1) else: # Check if scientific representation should be used. if nonzero_finite_max / nonzero_finite_min > 1000.\ or nonzero_finite_max > 1.e8\ or nonzero_finite_min < 1.e-4: self.sci_mode = True for value in nonzero_finite_vals: value_str = ('{{:.{}e}}').format(PRINT_OPTS.precision).format(value) self.max_width = max(self.max_width, len(value_str)) else: for value in nonzero_finite_vals: value_str = ('{{:.{}f}}').format(PRINT_OPTS.precision).format(value) self.max_width = max(self.max_width, len(value_str)) if PRINT_OPTS.sci_mode is not None: self.sci_mode = PRINT_OPTS.sci_mode def width(self): return self.max_width def format(self, value): if self.floating_dtype: if self.sci_mode: ret = ('{{:{}.{}e}}').format(self.max_width, PRINT_OPTS.precision).format(value) elif self.int_mode: ret = '{:.0f}'.format(value) if not (math.isinf(value) or math.isnan(value)): ret += '.' else: ret = ('{{:.{}f}}').format(PRINT_OPTS.precision).format(value) else: ret = '{}'.format(value) return (self.max_width - len(ret)) * ' ' + ret def _scalar_str(self, formatter1, formatter2=None): if formatter2 is not None: real_str = _scalar_str(self.real, formatter1) imag_str = _scalar_str(self.imag, formatter2) + "j" if self.imag < 0: return real_str + imag_str.lstrip() else: return real_str + "+" + imag_str.lstrip() else: return formatter1.format(self.item()) def _vector_str(self, indent, summarize, formatter1, formatter2=None): # length includes spaces and comma between elements element_length = formatter1.width() + 2 if formatter2 is not None: # width for imag_formatter + an extra j for complex element_length += formatter2.width() + 1 elements_per_line = max(1, int(math.floor((PRINT_OPTS.linewidth - indent) / (element_length)))) char_per_line = element_length * elements_per_line def _val_formatter(val, formatter1=formatter1, formatter2=formatter2): if formatter2 is not None: real_str = formatter1.format(val.real) imag_str = formatter2.format(val.imag) + "j" if val.imag < 0: return real_str + imag_str.lstrip() else: return real_str + "+" + imag_str.lstrip() else: return formatter1.format(val) if summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems: data = ([_val_formatter(val) for val in self[:PRINT_OPTS.edgeitems].tolist()] + [' ...'] + [_val_formatter(val) for val in self[-PRINT_OPTS.edgeitems:].tolist()]) else: data = [_val_formatter(val) for val in self.tolist()] data_lines = [data[i:i + elements_per_line] for i in range(0, len(data), elements_per_line)] lines = [', '.join(line) for line in data_lines] return '[' + (',' + '\n' + ' ' * (indent + 1)).join(lines) + ']' # formatter2 is only used for printing complex tensors. # For complex tensors, formatter1 and formatter2 are the formatters for tensor.real # and tensor.imag respesectively def _tensor_str_with_formatter(self, indent, summarize, formatter1, formatter2=None): dim = self.dim() if dim == 0: return _scalar_str(self, formatter1, formatter2) if dim == 1: return _vector_str(self, indent, summarize, formatter1, formatter2) if summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems: slices = ([_tensor_str_with_formatter(self[i], indent + 1, summarize, formatter1, formatter2) for i in range(0, PRINT_OPTS.edgeitems)] + ['...'] + [_tensor_str_with_formatter(self[i], indent + 1, summarize, formatter1, formatter2) for i in range(len(self) - PRINT_OPTS.edgeitems, len(self))]) else: slices = [_tensor_str_with_formatter(self[i], indent + 1, summarize, formatter1, formatter2) for i in range(0, self.size(0))] tensor_str = (',' + '\n' * (dim - 1) + ' ' * (indent + 1)).join(slices) return '[' + tensor_str + ']' def _tensor_str(self, indent): if self.numel() == 0: return '[]' if self.has_names(): # There are two main codepaths (possibly more) that tensor printing goes through: # - tensor data can fit comfortably on screen # - tensor data needs to be summarized # Some of the codepaths don't fully support named tensors, so we send in # an unnamed tensor to the formatting code as a workaround. self = self.rename(None) summarize = self.numel() > PRINT_OPTS.threshold if self.dtype is torch.float16 or self.dtype is torch.bfloat16: self = self.float() if self.dtype.is_complex: real_formatter = _Formatter(get_summarized_data(self.real) if summarize else self.real) imag_formatter = _Formatter(get_summarized_data(self.imag) if summarize else self.imag) return _tensor_str_with_formatter(self, indent, summarize, real_formatter, imag_formatter) else: formatter = _Formatter(get_summarized_data(self) if summarize else self) return _tensor_str_with_formatter(self, indent, summarize, formatter) def _add_suffixes(tensor_str, suffixes, indent, force_newline): tensor_strs = [tensor_str] last_line_len = len(tensor_str) - tensor_str.rfind('\n') + 1 for suffix in suffixes: suffix_len = len(suffix) if force_newline or last_line_len + suffix_len + 2 > PRINT_OPTS.linewidth: tensor_strs.append(',\n' + ' ' * indent + suffix) last_line_len = indent + suffix_len force_newline = False else: tensor_strs.append(', ' + suffix) last_line_len += suffix_len + 2 tensor_strs.append(')') return ''.join(tensor_strs) def get_summarized_data(self): dim = self.dim() if dim == 0: return self if dim == 1: if self.size(0) > 2 * PRINT_OPTS.edgeitems: return torch.cat((self[:PRINT_OPTS.edgeitems], self[-PRINT_OPTS.edgeitems:])) else: return self if self.size(0) > 2 * PRINT_OPTS.edgeitems: start = [self[i] for i in range(0, PRINT_OPTS.edgeitems)] end = ([self[i] for i in range(len(self) - PRINT_OPTS.edgeitems, len(self))]) return torch.stack([get_summarized_data(x) for x in (start + end)]) else: return torch.stack([get_summarized_data(x) for x in self]) def _str_intern(inp): prefix = 'tensor(' indent = len(prefix) suffixes = [] # This is used to extract the primal value and thus disable the forward AD # within this function. # TODO(albanD) This needs to be updated when more than one level is supported self, tangent = torch.autograd.forward_ad.unpack_dual(inp) # Note [Print tensor device]: # A general logic here is we only print device when it doesn't match # the device specified in default tensor type. # Currently torch.set_default_tensor_type() only supports CPU/CUDA, thus # torch._C._get_default_device() only returns either cpu or cuda. # In other cases, we don't have a way to set them as default yet, # and we should always print out device for them. if self.device.type != torch._C._get_default_device()\ or (self.device.type == 'cuda' and torch.cuda.current_device() != self.device.index): suffixes.append('device=\'' + str(self.device) + '\'') # TODO: add an API to map real -> complex dtypes _default_complex_dtype = torch.cdouble if torch.get_default_dtype() == torch.double else torch.cfloat has_default_dtype = self.dtype in (torch.get_default_dtype(), _default_complex_dtype, torch.int64, torch.bool) if self.is_sparse: suffixes.append('size=' + str(tuple(self.shape))) suffixes.append('nnz=' + str(self._nnz())) if not has_default_dtype: suffixes.append('dtype=' + str(self.dtype)) indices_prefix = 'indices=tensor(' indices = self._indices().detach() indices_str = _tensor_str(indices, indent + len(indices_prefix)) if indices.numel() == 0: indices_str += ', size=' + str(tuple(indices.shape)) values_prefix = 'values=tensor(' values = self._values().detach() values_str = _tensor_str(values, indent + len(values_prefix)) if values.numel() == 0: values_str += ', size=' + str(tuple(values.shape)) tensor_str = indices_prefix + indices_str + '),\n' + ' ' * indent + values_prefix + values_str + ')' elif self.is_sparse_csr: suffixes.append('size=' + str(tuple(self.shape))) suffixes.append('nnz=' + str(self._nnz())) if not has_default_dtype: suffixes.append('dtype=' + str(self.dtype)) crow_indices_prefix = 'crow_indices=tensor(' crow_indices = self.crow_indices().detach() crow_indices_str = _tensor_str(crow_indices, indent + len(crow_indices_prefix)) if crow_indices.numel() == 0: crow_indices_str += ', size=' + str(tuple(crow_indices.shape)) col_indices_prefix = 'col_indices=tensor(' col_indices = self.col_indices().detach() col_indices_str = _tensor_str(col_indices, indent + len(col_indices_prefix)) if col_indices.numel() == 0: col_indices_str += ', size=' + str(tuple(col_indices.shape)) values_prefix = 'values=tensor(' values = self.values().detach() values_str = _tensor_str(values, indent + len(values_prefix)) if values.numel() == 0: values_str += ', size=' + str(tuple(values.shape)) tensor_str = crow_indices_prefix + crow_indices_str + '),\n' + ' ' * indent +\ col_indices_prefix + col_indices_str + '),\n' + ' ' * indent +\ values_prefix + values_str + ')' elif self.is_quantized: suffixes.append('size=' + str(tuple(self.shape))) if not has_default_dtype: suffixes.append('dtype=' + str(self.dtype)) suffixes.append('quantization_scheme=' + str(self.qscheme())) if self.qscheme() == torch.per_tensor_affine or self.qscheme() == torch.per_tensor_symmetric: suffixes.append('scale=' + str(self.q_scale())) suffixes.append('zero_point=' + str(self.q_zero_point())) elif self.qscheme() == torch.per_channel_affine or self.qscheme() == torch.per_channel_symmetric \ or self.qscheme() == torch.per_channel_affine_float_qparams: suffixes.append('scale=' + str(self.q_per_channel_scales())) suffixes.append('zero_point=' + str(self.q_per_channel_zero_points())) suffixes.append('axis=' + str(self.q_per_channel_axis())) tensor_str = _tensor_str(self.dequantize(), indent) else: if self.is_meta: suffixes.append('size=' + str(tuple(self.shape))) if self.dtype != torch.get_default_dtype(): suffixes.append('dtype=' + str(self.dtype)) # TODO: This implies that ellipses is valid syntax for allocating # a meta tensor, which it could be, but it isn't right now tensor_str = '...' else: if self.numel() == 0 and not self.is_sparse: # Explicitly print the shape if it is not (0,), to match NumPy behavior if self.dim() != 1: suffixes.append('size=' + str(tuple(self.shape))) # In an empty tensor, there are no elements to infer if the dtype # should be int64, so it must be shown explicitly. if self.dtype != torch.get_default_dtype(): suffixes.append('dtype=' + str(self.dtype)) tensor_str = '[]' else: if not has_default_dtype: suffixes.append('dtype=' + str(self.dtype)) if self.layout != torch.strided: tensor_str = _tensor_str(self.to_dense(), indent) else: tensor_str = _tensor_str(self, indent) if self.layout != torch.strided: suffixes.append('layout=' + str(self.layout)) # Use inp here to get the original grad_fn and not the one generated by the forward grad # unpacking. if inp.grad_fn is not None: name = type(inp.grad_fn).__name__ if name == 'CppFunction': name = inp.grad_fn.name().rsplit('::', 1)[-1] suffixes.append('grad_fn=<{}>'.format(name)) elif inp.requires_grad: suffixes.append('requires_grad=True') if self.has_names(): suffixes.append('names={}'.format(self.names)) if tangent is not None: suffixes.append('tangent={}'.format(tangent)) return _add_suffixes(prefix + tensor_str, suffixes, indent, force_newline=self.is_sparse) def _str(self): with torch.no_grad(): return _str_intern(self)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources