TransformerEncoderLayer¶
-
class
torch.nn.
TransformerEncoderLayer
(d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='relu', layer_norm_eps=1e-05, batch_first=False, device=None, dtype=None)[source]¶ TransformerEncoderLayer is made up of self-attn and feedforward network. This standard encoder layer is based on the paper “Attention Is All You Need”. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application.
- Parameters
d_model – the number of expected features in the input (required).
nhead – the number of heads in the multiheadattention models (required).
dim_feedforward – the dimension of the feedforward network model (default=2048).
dropout – the dropout value (default=0.1).
activation – the activation function of intermediate layer, relu or gelu (default=relu).
layer_norm_eps – the eps value in layer normalization components (default=1e-5).
batch_first – If
True
, then the input and output tensors are provided as (batch, seq, feature). Default:False
.
- Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) >>> src = torch.rand(10, 32, 512) >>> out = encoder_layer(src)
- Alternatively, when
batch_first
isTrue
: >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True) >>> src = torch.rand(32, 10, 512) >>> out = encoder_layer(src)
-
forward
(src, src_mask=None, src_key_padding_mask=None)[source]¶ Pass the input through the encoder layer.
- Parameters
src – the sequence to the encoder layer (required).
src_mask – the mask for the src sequence (optional).
src_key_padding_mask – the mask for the src keys per batch (optional).
- Shape:
see the docs in Transformer class.