DistributedDataParallel¶
-
class
torch.nn.parallel.
DistributedDataParallel
(module, device_ids=None, output_device=None, dim=0, broadcast_buffers=True, process_group=None, bucket_cap_mb=25, find_unused_parameters=False, check_reduction=False, gradient_as_bucket_view=False)[source]¶ Implements distributed data parallelism that is based on
torch.distributed
package at the module level.This container parallelizes the application of the given module by splitting the input across the specified devices by chunking in the batch dimension. The module is replicated on each machine and each device, and each such replica handles a portion of the input. During the backwards pass, gradients from each node are averaged.
The batch size should be larger than the number of GPUs used locally.
See also: Basics and Use nn.parallel.DistributedDataParallel instead of multiprocessing or nn.DataParallel. The same constraints on input as in
torch.nn.DataParallel
apply.Creation of this class requires that
torch.distributed
to be already initialized, by callingtorch.distributed.init_process_group()
.DistributedDataParallel
is proven to be significantly faster thantorch.nn.DataParallel
for single-node multi-GPU data parallel training.To use
DistributedDataParallel
on a host with N GPUs, you should spawn upN
processes, ensuring that each process exclusively works on a single GPU from 0 to N-1. This can be done by either settingCUDA_VISIBLE_DEVICES
for every process or by calling:>>> torch.cuda.set_device(i)
where i is from 0 to N-1. In each process, you should refer the following to construct this module:
>>> torch.distributed.init_process_group( >>> backend='nccl', world_size=N, init_method='...' >>> ) >>> model = DistributedDataParallel(model, device_ids=[i], output_device=i)
In order to spawn up multiple processes per node, you can use either
torch.distributed.launch
ortorch.multiprocessing.spawn
.Note
Please refer to PyTorch Distributed Overview for a brief introduction to all features related to distributed training.
Note
DistributedDataParallel
can be used in conjunction withtorch.distributed.optim.ZeroRedundancyOptimizer
to reduce per-rank optimizer states memory footprint. Please refer to ZeroRedundancyOptimizer recipe for more details.Note
nccl
backend is currently the fastest and highly recommended backend when using GPUs. This applies to both single-node and multi-node distributed training.Note
This module also supports mixed-precision distributed training. This means that your model can have different types of parameters such as mixed types of
fp16
andfp32
, the gradient reduction on these mixed types of parameters will just work fine.Note
If you use
torch.save
on one process to checkpoint the module, andtorch.load
on some other processes to recover it, make sure thatmap_location
is configured properly for every process. Withoutmap_location
,torch.load
would recover the module to devices where the module was saved from.Note
When a model is trained on
M
nodes withbatch=N
, the gradient will beM
times smaller when compared to the same model trained on a single node withbatch=M*N
if the loss is summed (NOT averaged as usual) across instances in a batch (because the gradients between different nodes are averaged). You should take this into consideration when you want to obtain a mathematically equivalent training process compared to the local training counterpart. But in most cases, you can just treat a DistributedDataParallel wrapped model, a DataParallel wrapped model and an ordinary model on a single GPU as the same (E.g. using the same learning rate for equivalent batch size).Note
Parameters are never broadcast between processes. The module performs an all-reduce step on gradients and assumes that they will be modified by the optimizer in all processes in the same way. Buffers (e.g. BatchNorm stats) are broadcast from the module in process of rank 0, to all other replicas in the system in every iteration.
Note
If you are using DistributedDataParallel in conjunction with the Distributed RPC Framework, you should always use
torch.distributed.autograd.backward()
to compute gradients andtorch.distributed.optim.DistributedOptimizer
for optimizing parameters.Example:
>>> import torch.distributed.autograd as dist_autograd >>> from torch.nn.parallel import DistributedDataParallel as DDP >>> from torch import optim >>> from torch.distributed.optim import DistributedOptimizer >>> from torch.distributed.rpc import RRef >>> >>> t1 = torch.rand((3, 3), requires_grad=True) >>> t2 = torch.rand((3, 3), requires_grad=True) >>> rref = rpc.remote("worker1", torch.add, args=(t1, t2)) >>> ddp_model = DDP(my_model) >>> >>> # Setup optimizer >>> optimizer_params = [rref] >>> for param in ddp_model.parameters(): >>> optimizer_params.append(RRef(param)) >>> >>> dist_optim = DistributedOptimizer( >>> optim.SGD, >>> optimizer_params, >>> lr=0.05, >>> ) >>> >>> with dist_autograd.context() as context_id: >>> pred = ddp_model(rref.to_here()) >>> loss = loss_func(pred, loss) >>> dist_autograd.backward(context_id, loss) >>> dist_optim.step()
Note
To let a non-DDP model load a state dict from a DDP model,
consume_prefix_in_state_dict_if_present()
needs to be applied to strip the prefix “module.” in the DDP state dict before loading.Warning
Constructor, forward method, and differentiation of the output (or a function of the output of this module) are distributed synchronization points. Take that into account in case different processes might be executing different code.
Warning
This module assumes all parameters are registered in the model by the time it is created. No parameters should be added nor removed later. Same applies to buffers.
Warning
This module assumes all parameters are registered in the model of each distributed processes are in the same order. The module itself will conduct gradient
allreduce
following the reverse order of the registered parameters of the model. In other words, it is users’ responsibility to ensure that each distributed process has the exact same model and thus the exact same parameter registration order.Warning
This module allows parameters with non-rowmajor-contiguous strides. For example, your model may contain some parameters whose
torch.memory_format
istorch.contiguous_format
and others whose format istorch.channels_last
. However, corresponding parameters in different processes must have the same strides.Warning
This module doesn’t work with
torch.autograd.grad()
(i.e. it will only work if gradients are to be accumulated in.grad
attributes of parameters).Warning
If you plan on using this module with a
nccl
backend or agloo
backend (that uses Infiniband), together with a DataLoader that uses multiple workers, please change the multiprocessing start method toforkserver
(Python 3 only) orspawn
. Unfortunately Gloo (that uses Infiniband) and NCCL2 are not fork safe, and you will likely experience deadlocks if you don’t change this setting.Warning
Forward and backward hooks defined on
module
and its submodules won’t be invoked anymore, unless the hooks are initialized in theforward()
method.Warning
You should never try to change your model’s parameters after wrapping up your model with
DistributedDataParallel
. Because, when wrapping up your model withDistributedDataParallel
, the constructor ofDistributedDataParallel
will register the additional gradient reduction functions on all the parameters of the model itself at the time of construction. If you change the model’s parameters afterwards, gradient redunction functions no longer match the correct set of parameters.Warning
Using
DistributedDataParallel
in conjunction with the Distributed RPC Framework is experimental and subject to change.- Parameters
module (Module) – module to be parallelized
device_ids (list of python:int or torch.device) –
CUDA devices. 1) For single-device modules,
device_ids
can contain exactly one device id, which represents the only CUDA device where the input module corresponding to this process resides. Alternatively,device_ids
can also beNone
. 2) For multi-device modules and CPU modules,device_ids
must beNone
.When
device_ids
isNone
for both cases, both the input data for the forward pass and the actual module must be placed on the correct device. (default:None
)output_device (int or torch.device) – Device location of output for single-device CUDA modules. For multi-device modules and CPU modules, it must be
None
, and the module itself dictates the output location. (default:device_ids[0]
for single-device modules)broadcast_buffers (bool) – Flag that enables syncing (broadcasting) buffers of the module at beginning of the
forward
function. (default:True
)process_group – The process group to be used for distributed data all-reduction. If
None
, the default process group, which is created bytorch.distributed.init_process_group()
, will be used. (default:None
)bucket_cap_mb –
DistributedDataParallel
will bucket parameters into multiple buckets so that gradient reduction of each bucket can potentially overlap with backward computation.bucket_cap_mb
controls the bucket size in MegaBytes (MB). (default: 25)find_unused_parameters (bool) – Traverse the autograd graph from all tensors contained in the return value of the wrapped module’s
forward
function. Parameters that don’t receive gradients as part of this graph are preemptively marked as being ready to be reduced. Note that allforward
outputs that are derived from module parameters must participate in calculating loss and later the gradient computation. If they don’t, this wrapper will hang waiting for autograd to produce gradients for those parameters. Any outputs derived from module parameters that are otherwise unused can be detached from the autograd graph usingtorch.Tensor.detach
. (default:False
)check_reduction – This argument is deprecated.
gradient_as_bucket_view (bool) – When set to
True
, gradients will be views pointing to different offsets ofallreduce
communication buckets. This can reduce peak memory usage, where the saved memory size will be equal to the total gradients size. Moreover, it avoids the overhead of copying between gradients andallreduce
communication buckets. When gradients are views,detach_()
cannot be called on the gradients. If hitting such errors, please fix it by referring to thezero_grad()
function intorch/optim/optimizer.py
as a solution.
- Variables
~DistributedDataParallel.module (Module) – the module to be parallelized.
Example:
>>> torch.distributed.init_process_group(backend='nccl', world_size=4, init_method='...') >>> net = torch.nn.parallel.DistributedDataParallel(model, pg)
-
join
(divide_by_initial_world_size=True, enable=True, throw_on_early_termination=False)[source]¶ A context manager to be used in conjunction with an instance of
torch.nn.parallel.DistributedDataParallel
to be able to train with uneven inputs across participating processes.This context manager will keep track of already-joined DDP processes, and “shadow” the forward and backward passes by inserting collective communication operations to match with the ones created by non-joined DDP processes. This will ensure each collective call has a corresponding call by already-joined DDP processes, preventing hangs or errors that would otherwise happen when training with uneven inputs across processes. Alternatively, if the flag
throw_on_early_termination
is specified to beTrue
, all trainers will throw an error once one rank runs out of inputs, allowing these errors to be caught and handled according to application logic.Once all DDP processes have joined, the context manager will broadcast the model corresponding to the last joined process to all processes to ensure the model is the same across all processes (which is guaranteed by DDP).
To use this to enable training with uneven inputs across processes, simply wrap this context manager around your training loop. No further modifications to the model or data loading is required.
Warning
If the model or training loop this context manager is wrapped around has additional distributed collective operations, such as
SyncBatchNorm
in the model’s forward pass, then the flagthrow_on_early_termination
must be enabled. This is because this context manager is not aware of non-DDP collective communication. This flag will cause all ranks to throw when any one rank exhausts inputs, allowing these errors to be caught and recovered from across all ranks.- Parameters
divide_by_initial_world_size (bool) – If
True
, will divide gradients by the initialworld_size
DDP training was launched with. IfFalse
, will compute the effective world size (number of ranks that have not depleted their inputs yet) and divide gradients by that during allreduce. Setdivide_by_initial_world_size=True
to ensure every input sample including the uneven inputs have equal weight in terms of how much they contribute to the global gradient. This is achieved by always dividing the gradient by the initialworld_size
even when we encounter uneven inputs. If you set this toFalse
, we divide the gradient by the remaining number of nodes. This ensures parity with training on a smallerworld_size
although it also means the uneven inputs would contribute more towards the global gradient. Typically, you would want to set this toTrue
for cases where the last few inputs of your training job are uneven. In extreme cases, where there is a large discrepancy in the number of inputs, setting this toFalse
might provide better results.enable (bool) – Whether to enable uneven input detection or not. Pass in
enable=False
to disable in cases where you know that inputs are even across participating processes. Default isTrue
.throw_on_early_termination (bool) – Whether to throw an error or continue training when at least one rank has exhausted inputs. If
True
, will throw upon the first rank reaching end of data. IfFalse
, will continue training with a smaller effective world size until all ranks are joined. Note that if this flag is specified, then the flagdivide_by_initial_world_size
would be ignored. Default isFalse
.
Example:
>>> import torch >>> import torch.distributed as dist >>> import os >>> import torch.multiprocessing as mp >>> import torch.nn as nn >>> # On each spawned worker >>> def worker(rank): >>> dist.init_process_group("nccl", rank=rank, world_size=2) >>> torch.cuda.set_device(rank) >>> model = nn.Linear(1, 1, bias=False).to(rank) >>> model = torch.nn.parallel.DistributedDataParallel( >>> model, device_ids=[rank], output_device=rank >>> ) >>> # Rank 1 gets one more input than rank 0. >>> inputs = [torch.tensor([1]).float() for _ in range(10 + rank)] >>> with model.join(): >>> for _ in range(5): >>> for inp in inputs: >>> loss = model(inp).sum() >>> loss.backward() >>> # Without the join() API, the below synchronization will hang >>> # blocking for rank 1's allreduce to complete. >>> torch.cuda.synchronize(device=rank)
-
no_sync
()[source]¶ A context manager to disable gradient synchronizations across DDP processes. Within this context, gradients will be accumulated on module variables, which will later be synchronized in the first forward-backward pass exiting the context.
Example:
>>> ddp = torch.nn.parallel.DistributedDataParallel(model, pg) >>> with ddp.no_sync(): >>> for input in inputs: >>> ddp(input).backward() # no synchronization, accumulate grads >>> ddp(another_input).backward() # synchronize grads
-
register_comm_hook
(state, hook)[source]¶ Registers a communication hook which is an enhancement that provides a flexible hook to users where they can specify how DDP aggregates gradients across multiple workers.
This hook would be very useful for researchers to try out new ideas. For example, this hook can be used to implement several algorithms like GossipGrad and gradient compression which involve different communication strategies for parameter syncs while running Distributed DataParallel training.
- Parameters
state (object) –
Passed to the hook to maintain any state information during the training process. Examples include error feedback in gradient compression, peers to communicate with next in GossipGrad, etc.
It is locally stored by each worker and shared by all the gradient tensors on the worker.
hook (callable) –
Averages gradient tensors across workers and defined as:
hook(state: object, bucket: dist.GradBucket) -> torch.futures.Future
:This function is called once the bucket is ready. The hook can perform whatever processing is needed and return a Future indicating completion of any async work (ex: allreduce). If the hook doesn’t perform any communication, it can also just return a completed Future. The Future should hold the new value of grad bucket’s tensors. Once a bucket is ready, c10d reducer would call this hook and use the tensors returned by the Future and copy grads to individual parameters.
We also provide an API called
get_future
to retrieve a Future associated with the completion ofc10d.ProcessGroup.work
.get_future
is currently supported for MPI and also supported for most operations on GLOO and MPI, except for peer to peer operations (send/recv).
Warning
Grad bucket’s tensors will not be predivided by world_size. User is responsible to divide by the world_size in case of operations like allreduce.
Warning
DDP communication hook can only be registered once and should be registered before calling backward.
Warning
The Future object that hook returns should contain a result that has the same shape with the tensors inside grad bucket.
Warning
DDP communication hook does not support single-process multiple-device mode. Gradbucket tensors should consist of only a single tensor.
Warning
get_future
API supports NCCL, and partially GLOO and MPI backends (no support for peer-to-peer operations like send/recv) and will return atorch._C.Future
which is an internal type and should be used with caution. It can still be used byregister_comm_hook
API, but it is subject to some subtle differences compared totorch.futures.Future
.Warning
DDP communication hook is experimental and subject to change.
- Example::
Below is an example of a noop hook that returns the same tensors.
>>> def noop(state: object, bucket: dist.GradBucket): -> torch.futures.Future >>> fut = torch.futures.Future() >>> fut.set_result(bucket.get_tensors()) >>> return fut
>>> ddp.register_comm_hook(state = None, hook = noop)
- Example::
Below is an example of a Parallel SGD algorithm where gradients are encoded before allreduce, and then decoded after allreduce.
>>> def encode_and_decode(state: object, bucket: dist.GradBucket): -> torch.futures.Future >>> tensors = [t / process_group.world_size for t in bucket.get_tensors()] >>> encoded_tensors = encode(tensors) # encode gradients >>> fut = process_group.allreduce(encoded_tensors).get_future() >>> # Define the then callback to decode. >>> def decode(fut): >>> decoded_tensors = decode(fut.value()) # decode gradients >>> return decoded_tensors >>> return fut.then(decode)
>>> ddp.register_comm_hook(state = None, hook = encode_and_decode)