Shortcuts

torch.hsplit

torch.hsplit(input, indices_or_sections) → List of Tensors

Splits input, a tensor with one or more dimensions, into multiple tensors horizontally according to indices_or_sections. Each split is a view of input.

If input is one dimensional this is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=0) (the split dimension is zero), and if input has two or more dimensions it’s equivalent to calling torch.tensor_split(input, indices_or_sections, dim=1) (the split dimension is 1), except that if indices_or_sections is an integer it must evenly divide the split dimension or a runtime error will be thrown.

This function is based on NumPy’s numpy.hsplit().

Parameters
Example::
>>> t = torch.arange(16.0).reshape(4,4)
>>> t
tensor([[ 0.,  1.,  2.,  3.],
        [ 4.,  5.,  6.,  7.],
        [ 8.,  9., 10., 11.],
        [12., 13., 14., 15.]])
>>> torch.hsplit(t, 2)
(tensor([[ 0.,  1.],
         [ 4.,  5.],
         [ 8.,  9.],
         [12., 13.]]),
 tensor([[ 2.,  3.],
         [ 6.,  7.],
         [10., 11.],
         [14., 15.]]))
>>> torch.hsplit(t, [3, 6])
(tensor([[ 0.,  1.,  2.],
         [ 4.,  5.,  6.],
         [ 8.,  9., 10.],
         [12., 13., 14.]]),
 tensor([[ 3.],
         [ 7.],
         [11.],
         [15.]]),
 tensor([], size=(4, 0)))

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources