torch.gradient¶
-
torch.
gradient
(input, *, spacing=None, dim=None, edge_order=1) → List of Tensors¶ This function is analogous to NumPy’s gradient function.
- Parameters
{input} –
- Keyword Arguments
spacing (scalar, list of scalar, list of Tensor, optional) – implicitly or explicitly represents
coordinates the function is evaluated at (the) –
dim (int, list of python:int, optional) – the dimension or dimensions to approximate the gradient over.
edge_order (int, optional) – unsupported (must be equal to its default value which is 1.)
Example
>>> t = torch.tensor([1, 2, 4, 7, 11, 16], dtype=torch.float) >>> torch.gradient(t) tensor([1. , 1.5, 2.5, 3.5, 4.5, 5. ]) >>> coords = torch.tensor([0., 1., 1.5, 3.5, 4., 6.], dtype=torch.float) >>> torch.gradient(t, spacing=(coords,)) tensor([1. , 3. , 3.5, 6.7, 6.9, 2.5])