torch.fft.fftn¶
-
torch.fft.
fftn
(input, s=None, dim=None, norm=None, *, out=None) → Tensor¶ Computes the N dimensional discrete Fourier transform of
input
.Note
The Fourier domain representation of any real signal satisfies the Hermitian property:
X[i_1, ..., i_n] = conj(X[-i_1, ..., -i_n])
. This function always returns all positive and negative frequency terms even though, for real inputs, half of these values are redundant.rfftn()
returns the more compact one-sided representation where only the positive frequencies of the last dimension are returned.- Parameters
input (Tensor) – the input tensor
s (Tuple[int], optional) – Signal size in the transformed dimensions. If given, each dimension
dim[i]
will either be zero-padded or trimmed to the lengths[i]
before computing the FFT. If a length-1
is specified, no padding is done in that dimension. Default:s = [input.size(d) for d in dim]
dim (Tuple[int], optional) – Dimensions to be transformed. Default: all dimensions, or the last
len(s)
dimensions ifs
is given.norm (str, optional) –
Normalization mode. For the forward transform (
fftn()
), these correspond to:"forward"
- normalize by1/n
"backward"
- no normalization"ortho"
- normalize by1/sqrt(n)
(making the FFT orthonormal)
Where
n = prod(s)
is the logical FFT size. Calling the backward transform (ifftn()
) with the same normalization mode will apply an overall normalization of1/n
between the two transforms. This is required to makeifftn()
the exact inverse.Default is
"backward"
(no normalization).
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example
>>> x = torch.rand(10, 10, dtype=torch.complex64) >>> fftn = torch.fft.fftn(x)
The discrete Fourier transform is separable, so
fftn()
here is equivalent to two one-dimensionalfft()
calls:>>> two_ffts = torch.fft.fft(torch.fft.fft(x, dim=0), dim=1) >>> torch.allclose(fftn, two_ffts)