Shortcuts

torch.cholesky

torch.cholesky(input, upper=False, *, out=None) → Tensor

Computes the Cholesky decomposition of a symmetric positive-definite matrix AA or for batches of symmetric positive-definite matrices.

If upper is True, the returned matrix U is upper-triangular, and the decomposition has the form:

A=UTUA = U^TU

If upper is False, the returned matrix L is lower-triangular, and the decomposition has the form:

A=LLTA = LL^T

If upper is True, and AA is a batch of symmetric positive-definite matrices, then the returned tensor will be composed of upper-triangular Cholesky factors of each of the individual matrices. Similarly, when upper is False, the returned tensor will be composed of lower-triangular Cholesky factors of each of the individual matrices.

Warning

torch.cholesky() is deprecated in favor of torch.linalg.cholesky() and will be removed in a future PyTorch release.

L = torch.cholesky(A) should be replaced with

L = torch.linalg.cholesky(A)

U = torch.cholesky(A, upper=True) should be replaced with

U = torch.linalg.cholesky(A.transpose(-2, -1).conj()).transpose(-2, -1).conj()
Parameters
  • input (Tensor) – the input tensor AA of size (,n,n)(*, n, n) where * is zero or more batch dimensions consisting of symmetric positive-definite matrices.

  • upper (bool, optional) – flag that indicates whether to return a upper or lower triangular matrix. Default: False

Keyword Arguments

out (Tensor, optional) – the output matrix

Example:

>>> a = torch.randn(3, 3)
>>> a = torch.mm(a, a.t()) # make symmetric positive-definite
>>> l = torch.cholesky(a)
>>> a
tensor([[ 2.4112, -0.7486,  1.4551],
        [-0.7486,  1.3544,  0.1294],
        [ 1.4551,  0.1294,  1.6724]])
>>> l
tensor([[ 1.5528,  0.0000,  0.0000],
        [-0.4821,  1.0592,  0.0000],
        [ 0.9371,  0.5487,  0.7023]])
>>> torch.mm(l, l.t())
tensor([[ 2.4112, -0.7486,  1.4551],
        [-0.7486,  1.3544,  0.1294],
        [ 1.4551,  0.1294,  1.6724]])
>>> a = torch.randn(3, 2, 2)
>>> a = torch.matmul(a, a.transpose(-1, -2)) + 1e-03 # make symmetric positive-definite
>>> l = torch.cholesky(a)
>>> z = torch.matmul(l, l.transpose(-1, -2))
>>> torch.max(torch.abs(z - a)) # Max non-zero
tensor(2.3842e-07)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources