Quickstart¶
To launch a fault-tolerant job, run the following on all nodes.
python -m torch.distributed.run
--nnodes=NUM_NODES
--nproc_per_node=TRAINERS_PER_NODE
--rdzv_id=JOB_ID
--rdzv_backend=c10d
--rdzv_endpoint=HOST_NODE_ADDR
YOUR_TRAINING_SCRIPT.py (--arg1 ... train script args...)
To launch an elastic job, run the following on at least MIN_SIZE
nodes
and at most MAX_SIZE
nodes.
python -m torch.distributed.run
--nnodes=MIN_SIZE:MAX_SIZE
--nproc_per_node=TRAINERS_PER_NODE
--rdzv_id=JOB_ID
--rdzv_backend=c10d
--rdzv_endpoint=HOST_NODE_ADDR
YOUR_TRAINING_SCRIPT.py (--arg1 ... train script args...)
HOST_NODE_ADDR
, in form <host>[:<port>] (e.g. node1.example.com:29400),
specifies the node and the port on which the C10d rendezvous backend should be
instantiated and hosted. It can be any node in your training cluster, but
ideally you should pick a node that has a high bandwidth.
Note
If no port number is specified HOST_NODE_ADDR
defaults to 29400.
Note
The --standalone
option can be passed to launch a single node job with a
sidecar rendezvous backend. You don’t have to pass --rdzv_id
,
--rdzv_endpoint
, and --rdzv_backend
when the --standalone
option
is used.
Note
Learn more about writing your distributed training script here.
If torch.distributed.run
does not meet your requirements you may use our
APIs directly for more powerful customization. Start by taking a look at the
elastic agent API).