Source code for torch.quantization.fake_quantize
import torch
from torch.nn import Module
from .observer import MovingAverageMinMaxObserver, HistogramObserver, MovingAveragePerChannelMinMaxObserver, _with_args
import re
from abc import ABC, abstractmethod
from typing import Any, Tuple
def _is_per_channel(qscheme: 'torch.qscheme') -> bool:
return qscheme in [torch.per_channel_symmetric, torch.per_channel_affine]
def _is_per_tensor(qscheme: 'torch.qscheme') -> bool:
return qscheme in [torch.per_tensor_symmetric, torch.per_tensor_affine]
def _is_symmetric_quant(qscheme: 'torch.qscheme') -> bool:
return qscheme in [torch.per_tensor_symmetric, torch.per_channel_symmetric]
class FakeQuantizeBase(ABC, Module):
r""" Base fake quantize module
Any fake quantize implementation should derive from this class.
Concrete fake quantize module should follow the same API. In forward, they will update
the statistics of the observed Tensor and fake quantize the input. They should also provide a
`calculate_qparams` function that computes the quantization parameters given
the collected statistics.
"""
fake_quant_enabled: torch.Tensor
observer_enabled: torch.Tensor
def __init__(self):
super().__init__()
# fake_quant_enabled and observer_enabled are buffers to support their
# replication in DDP. Data type is uint8 because NCCL does not support
# bool tensors.
self.register_buffer('fake_quant_enabled', torch.tensor([1], dtype=torch.uint8))
self.register_buffer('observer_enabled', torch.tensor([1], dtype=torch.uint8))
@abstractmethod
def forward(self, x):
pass
@abstractmethod
def calculate_qparams(self, **kwargs):
pass
@torch.jit.export
def enable_fake_quant(self, enabled: bool = True) -> None:
self.fake_quant_enabled[0] = 1 if enabled else 0
@torch.jit.export
def disable_fake_quant(self):
self.enable_fake_quant(False)
@torch.jit.export
def enable_observer(self, enabled: bool = True) -> None:
self.observer_enabled[0] = 1 if enabled else 0
@torch.jit.export
def disable_observer(self):
self.enable_observer(False)
with_args = classmethod(_with_args)
[docs]class FakeQuantize(FakeQuantizeBase):
r""" Simulate the quantize and dequantize operations in training time.
The output of this module is given by
x_out = (clamp(round(x/scale + zero_point), quant_min, quant_max)-zero_point)*scale
* :attr:`scale` defines the scale factor used for quantization.
* :attr:`zero_point` specifies the quantized value to which 0 in floating point maps to
* :attr:`quant_min` specifies the minimum allowable quantized value.
* :attr:`quant_max` specifies the maximum allowable quantized value.
* :attr:`fake_quant_enable` controls the application of fake quantization on tensors, note that
statistics can still be updated.
* :attr:`observer_enable` controls statistics collection on tensors
* :attr:`dtype` specifies the quantized dtype that is being emulated with fake-quantization,
allowable values are torch.qint8 and torch.quint8. The values of quant_min and
quant_max should be chosen to be consistent with the dtype
Args:
observer (module): Module for observing statistics on input tensors and calculating scale
and zero-point.
quant_min (int): The minimum allowable quantized value.
quant_max (int): The maximum allowable quantized value.
observer_kwargs (optional): Arguments for the observer module
Attributes:
observer (Module): User provided module that collects statistics on the input tensor and
provides a method to calculate scale and zero-point.
"""
scale: torch.Tensor
zero_point: torch.Tensor
def __init__(self, observer=MovingAverageMinMaxObserver, quant_min=0, quant_max=255, **observer_kwargs):
super().__init__()
assert quant_min <= quant_max, \
'quant_min must be less than or equal to quant_max'
self.quant_min = quant_min
self.quant_max = quant_max
self.activation_post_process = observer(**observer_kwargs)
assert torch.iinfo(self.activation_post_process.dtype).min <= quant_min, 'quant_min out of bound'
assert quant_max <= torch.iinfo(self.activation_post_process.dtype).max, 'quant_max out of bound'
self.register_buffer('scale', torch.tensor([1.0], dtype=torch.float))
self.register_buffer('zero_point', torch.tensor([0], dtype=torch.int))
self.dtype = self.activation_post_process.dtype
self.qscheme = self.activation_post_process.qscheme
self.ch_axis = self.activation_post_process.ch_axis \
if hasattr(self.activation_post_process, 'ch_axis') else -1
assert _is_per_channel(self.qscheme) or \
_is_per_tensor(self.qscheme), \
'Only per channel and per tensor quantization are supported in fake quantize' + \
' got qscheme: ' + str(self.qscheme)
self.is_per_channel = _is_per_channel(self.qscheme)
@torch.jit.export
def calculate_qparams(self):
return self.activation_post_process.calculate_qparams()
def forward(self, X):
if self.observer_enabled[0] == 1:
self.activation_post_process(X.detach())
_scale, _zero_point = self.calculate_qparams()
_scale, _zero_point = _scale.to(self.scale.device), _zero_point.to(self.zero_point.device)
if self.scale.shape != _scale.shape:
self.scale.resize_(_scale.shape)
self.zero_point.resize_(_zero_point.shape)
self.scale.copy_(_scale)
self.zero_point.copy_(_zero_point)
if self.fake_quant_enabled[0] == 1:
if self.is_per_channel:
X = torch.fake_quantize_per_channel_affine(
X, self.scale, self.zero_point,
self.ch_axis, self.quant_min, self.quant_max)
else:
X = torch.fake_quantize_per_tensor_affine(
X, self.scale, self.zero_point,
self.quant_min, self.quant_max)
return X
@torch.jit.export
def extra_repr(self):
return 'fake_quant_enabled={}, observer_enabled={}, ' \
'quant_min={}, quant_max={}, dtype={}, qscheme={}, ch_axis={}, ' \
'scale={}, zero_point={}'.format(
self.fake_quant_enabled, self.observer_enabled,
self.quant_min, self.quant_max,
self.dtype, self.qscheme, self.ch_axis, self.scale, self.zero_point)
def _save_to_state_dict(self, destination, prefix, keep_vars):
# We cannot currently register scalar values as buffers, so need to manually
# specify serialization here.
super(FakeQuantize, self)._save_to_state_dict(destination, prefix, keep_vars)
destination[prefix + 'scale'] = self.scale
destination[prefix + 'zero_point'] = self.zero_point
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
# Removing this function throws an error that the the size of the loaded tensor does not match the original size
# i.e., These buffers start out with numel 0 and become numel 1 once they have their first forward pass.
local_state = ['scale', 'zero_point']
for name in local_state:
key = prefix + name
if key in state_dict:
val = state_dict[key]
# Custom handling to allow loading scale and zero_point
# of size N into uninitialized buffers of size 0. The
# buffers are resized here, and the values are copied in
# the default state_dict loading code of the parent.
if name == 'scale':
self.scale.resize_(val.shape)
else:
assert name == 'zero_point'
self.zero_point.resize_(val.shape)
# For torchscript module we need to update the attributes here since we do not
# call the `_load_from_state_dict` function defined module.py
if torch.jit.is_scripting():
if name == 'scale':
self.scale.copy_(val)
else:
assert name == 'zero_point'
self.zero_point.copy_(val)
elif strict:
missing_keys.append(key)
super(FakeQuantize, self)._load_from_state_dict(state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs)
class FixedQParamsFakeQuantize(FakeQuantizeBase):
""" Simulate quantize and dequantize with fixed quantization
parameters in training time. Only per tensor quantization
is supported.
Args:
`scale` (float): fixed scale for the fake quantize module
`zero_point` (int): fixed zero point for the fake quantize module
`dtype`, `qscheme`, `quant_min`, `quant_max`
"""
scale: torch.Tensor
zero_point: torch.Tensor
def __init__(self,
scale,
zero_point,
dtype=torch.quint8,
qscheme=torch.per_tensor_affine,
quant_min=0,
quant_max=255):
super().__init__()
assert quant_min <= quant_max, 'quant_min should be less than or equal to quant_max'
self.quant_min = quant_min
self.quant_max = quant_max
self.register_buffer('scale', torch.tensor([scale], dtype=torch.float))
self.register_buffer('zero_point', torch.tensor([zero_point], dtype=torch.int))
self.dtype = dtype
self.qscheme = qscheme
assert _is_per_tensor(self.qscheme), 'Only per tensor quantization is supported' + \
' FixedQParamsFakeQuantize module, got qscheme:' + str(self.qscheme)
def forward(self, X):
if self.fake_quant_enabled[0] == 1:
X = torch.fake_quantize_per_tensor_affine(X, self.scale,
self.zero_point, self.quant_min,
self.quant_max)
return X
@torch.jit.export
def calculate_qparams(self):
return self.scale, self.zero_point
@torch.jit.export
def extra_repr(self):
return 'fake_quant_enabled={}, observer_enabled={}, scale={}, zero_point={}, ' \
'dtype={}, quant_min={}, quant_max={}, qscheme={}'.format(
self.fake_quant_enabled, self.observer_enabled,
self.scale, self.zero_point, self.dtype,
self.quant_min, self.quant_max, self.qscheme)
class FusedMovingAvgObsFakeQuantize(FakeQuantize):
r"""Fused module that is used to observe the input tensor (compute min/max), compute
scale/zero_point and fake_quantize the tensor.
This module uses calculation similar MovingAverageMinMaxObserver for the inputs,
to compute the min/max values in order to compute the scale/zero_point.
The qscheme input in the observer is used to differentiate between symmetric/affine
quantization scheme.
The output of this module is given by
x_out = (clamp(round(x/scale + zero_point), quant_min, quant_max)-zero_point)*scale
Similar to :class:`~torch.quantization.FakeQuantize`, and accepts the same attributes as the
base class.
"""
def __init__(
self,
observer: Any = MovingAverageMinMaxObserver,
quant_min: int = 0,
quant_max: int = 255,
**observer_kwargs: Any
) -> None:
super().__init__(observer, quant_min, quant_max, **observer_kwargs)
assert isinstance(self.activation_post_process, (MovingAverageMinMaxObserver, MovingAveragePerChannelMinMaxObserver)),\
"Fused observer+fake_quant module only works with MovingAverageMinMaxObserver"
self.quant_min: int = quant_min
self.quant_max: int = quant_max
self.register_buffer("fake_quant_enabled", torch.tensor([1], dtype=torch.long))
self.register_buffer("observer_enabled", torch.tensor([1], dtype=torch.long))
self.is_symmetric_quant = _is_symmetric_quant(self.activation_post_process.qscheme)
self.quant_min, self.quant_max = self.activation_post_process.quant_min, self.activation_post_process.quant_max
@torch.jit.export
def calculate_qparams(self) -> Tuple[torch.Tensor, torch.Tensor]:
return self.activation_post_process.calculate_qparams()
@torch.jit.export
def extra_repr(self) -> str:
return (
"fake_quant_enabled={}, observer_enabled={}, scale={}, zero_point={}, "
"dtype={}, quant_min={}, quant_max={}, qscheme={}, reduce_range={}".format(
self.fake_quant_enabled,
self.observer_enabled,
self.scale,
self.zero_point,
self.dtype,
self.quant_min,
self.quant_max,
self.qscheme,
self.activation_post_process.reduce_range,
)
)
def forward(self, X: torch.Tensor) -> torch.Tensor:
return torch.fused_moving_avg_obs_fake_quant(
X,
self.observer_enabled,
self.fake_quant_enabled,
self.activation_post_process.min_val,
self.activation_post_process.max_val,
self.scale,
self.zero_point,
self.activation_post_process.averaging_constant,
self.quant_min,
self.quant_max,
self.ch_axis,
self.is_per_channel,
self.is_symmetric_quant,
)
default_fake_quant = FakeQuantize.with_args(observer=MovingAverageMinMaxObserver, quant_min=0, quant_max=255,
dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=True)
default_weight_fake_quant = FakeQuantize.with_args(observer=MovingAverageMinMaxObserver, quant_min=-128, quant_max=127,
dtype=torch.qint8, qscheme=torch.per_tensor_symmetric, reduce_range=False)
# TODO(future PR): remove these defaults and enforce activation functions
# to explicitly specify their output range
default_symmetric_fixed_qparams_fake_quant = FixedQParamsFakeQuantize.with_args(
scale=2.0 / 256.0, zero_point=128, dtype=torch.quint8, quant_min=0, quant_max=255)
default_affine_fixed_qparams_fake_quant = FixedQParamsFakeQuantize.with_args(
scale=1.0 / 256.0, zero_point=0, dtype=torch.quint8, quant_min=0, quant_max=255)
default_per_channel_weight_fake_quant = FakeQuantize.with_args(observer=MovingAveragePerChannelMinMaxObserver,
quant_min=-128,
quant_max=127,
dtype=torch.qint8,
qscheme=torch.per_channel_symmetric,
reduce_range=False,
ch_axis=0)
default_histogram_fake_quant = FakeQuantize.with_args(observer=HistogramObserver,
quant_min=0,
quant_max=255,
dtype=torch.quint8,
qscheme=torch.per_tensor_affine,
reduce_range=True)
default_fused_act_fake_quant = FusedMovingAvgObsFakeQuantize.with_args(observer=MovingAverageMinMaxObserver,
quant_min=0,
quant_max=255,
dtype=torch.quint8,)
default_fused_wt_fake_quant = FusedMovingAvgObsFakeQuantize.with_args(observer=MovingAverageMinMaxObserver,
quant_min=-128,
quant_max=127,
dtype=torch.qint8,
qscheme=torch.per_tensor_symmetric)
default_fused_per_channel_wt_fake_quant = FusedMovingAvgObsFakeQuantize.with_args(observer=MovingAveragePerChannelMinMaxObserver,
quant_min=-128,
quant_max=127,
dtype=torch.qint8,
qscheme=torch.per_channel_symmetric)
def _is_fake_quant_script_module(mod):
''' Returns true if given mod is an instance of FakeQuantize script module.
'''
if isinstance(mod, torch.jit.RecursiveScriptModule):
# qualified name looks like '__torch__.torch.quantization.fake_quantize.___torch_mangle_2.FakeQuantize'
suffix = mod._c.qualified_name.split('.', 1)[1]
name = re.sub(r'\.___torch_mangle_\d+', '', suffix)
return name == 'torch.quantization.fake_quantize.FakeQuantize' or \
name == 'torch.quantization.fake_quantize.FusedMovingAvgObsFakeQuantize'
return False
def disable_fake_quant(mod):
if isinstance(mod, FakeQuantizeBase) or _is_fake_quant_script_module(mod):
mod.disable_fake_quant()
def enable_fake_quant(mod):
if isinstance(mod, FakeQuantizeBase) or _is_fake_quant_script_module(mod):
mod.enable_fake_quant()
def disable_observer(mod):
if isinstance(mod, FakeQuantizeBase) or _is_fake_quant_script_module(mod):
mod.disable_observer()
def enable_observer(mod):
if isinstance(mod, FakeQuantizeBase) or _is_fake_quant_script_module(mod):
mod.enable_observer()