Source code for torch.nn.utils.parametrizations
import torch
from ..utils import parametrize
from ..modules import Module
from .. import functional as F
from typing import Optional
class _SpectralNorm(Module):
def __init__(
self,
weight: torch.Tensor,
n_power_iterations: int = 1,
dim: int = 0,
eps: float = 1e-12
) -> None:
super().__init__()
ndim = weight.ndim
if dim >= ndim or dim < -ndim:
raise IndexError("Dimension out of range (expected to be in range of "
f"[-{ndim}, {ndim - 1}] but got {dim})")
if n_power_iterations <= 0:
raise ValueError('Expected n_power_iterations to be positive, but '
'got n_power_iterations={}'.format(n_power_iterations))
self.dim = dim if dim >= 0 else dim + ndim
self.eps = eps
if ndim > 1:
# For ndim == 1 we do not need to approximate anything (see _SpectralNorm.forward)
self.n_power_iterations = n_power_iterations
weight_mat = self._reshape_weight_to_matrix(weight)
h, w = weight_mat.size()
u = weight_mat.new_empty(h).normal_(0, 1)
v = weight_mat.new_empty(w).normal_(0, 1)
self.register_buffer('_u', F.normalize(u, dim=0, eps=self.eps))
self.register_buffer('_v', F.normalize(v, dim=0, eps=self.eps))
# Start with u, v initialized to some reasonable values by performing a number
# of iterations of the power method
self._power_method(weight_mat, 15)
def _reshape_weight_to_matrix(self, weight: torch.Tensor) -> torch.Tensor:
# Precondition
assert weight.ndim > 1
if self.dim != 0:
# permute dim to front
weight = weight.permute(self.dim, *(d for d in range(weight.dim()) if d != self.dim))
return weight.flatten(1)
@torch.autograd.no_grad()
def _power_method(self, weight_mat: torch.Tensor, n_power_iterations: int) -> None:
# See original note at torch/nn/utils/spectral_norm.py
# NB: If `do_power_iteration` is set, the `u` and `v` vectors are
# updated in power iteration **in-place**. This is very important
# because in `DataParallel` forward, the vectors (being buffers) are
# broadcast from the parallelized module to each module replica,
# which is a new module object created on the fly. And each replica
# runs its own spectral norm power iteration. So simply assigning
# the updated vectors to the module this function runs on will cause
# the update to be lost forever. And the next time the parallelized
# module is replicated, the same randomly initialized vectors are
# broadcast and used!
#
# Therefore, to make the change propagate back, we rely on two
# important behaviors (also enforced via tests):
# 1. `DataParallel` doesn't clone storage if the broadcast tensor
# is already on correct device; and it makes sure that the
# parallelized module is already on `device[0]`.
# 2. If the out tensor in `out=` kwarg has correct shape, it will
# just fill in the values.
# Therefore, since the same power iteration is performed on all
# devices, simply updating the tensors in-place will make sure that
# the module replica on `device[0]` will update the _u vector on the
# parallized module (by shared storage).
#
# However, after we update `u` and `v` in-place, we need to **clone**
# them before using them to normalize the weight. This is to support
# backproping through two forward passes, e.g., the common pattern in
# GAN training: loss = D(real) - D(fake). Otherwise, engine will
# complain that variables needed to do backward for the first forward
# (i.e., the `u` and `v` vectors) are changed in the second forward.
# Precondition
assert weight_mat.ndim > 1
for _ in range(n_power_iterations):
# Spectral norm of weight equals to `u^T W v`, where `u` and `v`
# are the first left and right singular vectors.
# This power iteration produces approximations of `u` and `v`.
self._u = F.normalize(torch.mv(weight_mat, self._v), # type: ignore[has-type]
dim=0, eps=self.eps, out=self._u) # type: ignore[has-type]
self._v = F.normalize(torch.mv(weight_mat.t(), self._u),
dim=0, eps=self.eps, out=self._v) # type: ignore[has-type]
def forward(self, weight: torch.Tensor) -> torch.Tensor:
if weight.ndim == 1:
# Faster and more exact path, no need to approximate anything
return F.normalize(weight, dim=0, eps=self.eps)
else:
weight_mat = self._reshape_weight_to_matrix(weight)
if self.training:
self._power_method(weight_mat, self.n_power_iterations)
# See above on why we need to clone
u = self._u.clone(memory_format=torch.contiguous_format)
v = self._v.clone(memory_format=torch.contiguous_format)
# The proper way of computing this should be through F.bilinear, but
# it seems to have some efficiency issues:
# https://github.com/pytorch/pytorch/issues/58093
sigma = torch.dot(u, torch.mv(weight_mat, v))
return weight / sigma
def right_inverse(self, value: torch.Tensor) -> torch.Tensor:
# we may want to assert here that the passed value already
# satisfies constraints
return value
[docs]def spectral_norm(module: Module,
name: str = 'weight',
n_power_iterations: int = 1,
eps: float = 1e-12,
dim: Optional[int] = None) -> Module:
r"""Applies spectral normalization to a parameter in the given module.
.. math::
\mathbf{W}_{SN} = \dfrac{\mathbf{W}}{\sigma(\mathbf{W})},
\sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \dfrac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2}
When applied on a vector, it simplifies to
.. math::
\mathbf{x}_{SN} = \dfrac{\mathbf{x}}{\|\mathbf{x}\|_2}
Spectral normalization stabilizes the training of discriminators (critics)
in Generative Adversarial Networks (GANs) by reducing the Lipschitz constant
of the model. :math:`\sigma` is approximated performing one iteration of the
`power method`_ every time the weight is accessed. If the dimension of the
weight tensor is greater than 2, it is reshaped to 2D in power iteration
method to get spectral norm.
See `Spectral Normalization for Generative Adversarial Networks`_ .
.. _`power method`: https://en.wikipedia.org/wiki/Power_iteration
.. _`Spectral Normalization for Generative Adversarial Networks`: https://arxiv.org/abs/1802.05957
.. note::
This function is implemented using the new parametrization functionality
in :func:`torch.nn.utils.parametrize.register_parametrization`. It is a
reimplementation of :func:`torch.nn.utils.spectral_norm`.
.. note::
When this constraint is registered, the singular vectors associated to the largest
singular value are estimated rather than sampled at random. These are then updated
performing :attr:`n_power_iterations` of the `power method`_ whenever the tensor
is accessed with the module on `training` mode.
.. note::
If the `_SpectralNorm` module, i.e., `module.parametrization.weight[idx]`,
is in training mode on removal, it will perform another power iteration.
If you'd like to avoid this iteration, set the module to eval mode
before its removal.
Args:
module (nn.Module): containing module
name (str, optional): name of weight parameter
n_power_iterations (int, optional): number of power iterations to
calculate spectral norm
eps (float, optional): epsilon for numerical stability in
calculating norms
dim (int, optional): dimension corresponding to number of outputs,
the default is ``0``, except for modules that are instances of
ConvTranspose{1,2,3}d, when it is ``1``
Returns:
The original module with a new parametrization registered to the specified
weight
Example::
>>> snm = spectral_norm(nn.Linear(20, 40))
>>> snm
ParametrizedLinear(
in_features=20, out_features=40, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): _SpectralNorm()
)
)
)
>>> torch.linalg.matrix_norm(snm.weight, 2)
tensor(1.0000, grad_fn=<CopyBackwards>)
"""
if not hasattr(module, name):
raise ValueError(
"Module '{}' has no attribute with name '{}'".format(module, name)
)
# getattr should get the correct parametrized weight if there
# is already an parametrization registered
weight = getattr(module, name)
if dim is None:
if isinstance(module, (torch.nn.ConvTranspose1d,
torch.nn.ConvTranspose2d,
torch.nn.ConvTranspose3d)):
dim = 1
else:
dim = 0
parametrize.register_parametrization(module, name, _SpectralNorm(weight, n_power_iterations, dim, eps))
return module