Shortcuts

torch.var

torch.var(input, dim, unbiased, keepdim=False, *, out=None) → Tensor

If unbiased is True, Bessel’s correction will be used. Otherwise, the sample variance is calculated, without any correction.

Parameters
  • input (Tensor) – the input tensor.

  • dim (int or tuple of python:ints) – the dimension or dimensions to reduce.

Keyword Arguments
  • unbiased (bool) – whether to use Bessel’s correction (δN=1\delta N = 1).

  • keepdim (bool) – whether the output tensor has dim retained or not.

  • out (Tensor, optional) – the output tensor.

torch.var(input, unbiased) → Tensor

Calculates the variance of all elements in the input tensor.

If unbiased is True, Bessel’s correction will be used. Otherwise, the sample deviation is calculated, without any correction.

Parameters
  • input (Tensor) – the input tensor.

  • unbiased (bool) – whether to use Bessel’s correction (δN=1\delta N = 1).

Example:

>>> a = torch.tensor([[-0.8166, -1.3802, -0.3560]])
>>> torch.var(a, unbiased=False)
tensor(0.1754)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources