Source code for torch.storage
import io
import torch
from ._utils import _type, _cuda
from typing import Any, TypeVar, Type
T = TypeVar('T', bound='_StorageBase')
class _StorageBase(object):
_cdata: Any
is_cuda: bool = False
is_sparse: bool = False
def __init__(self, *args, **kwargs): ... # noqa: E704
def __len__(self) -> int: ... # noqa: E704
def __getitem__(self, idx): ... # noqa: E704
def copy_(self, source: T) -> T: ... # noqa: E704
def size(self) -> int: ... # noqa: E704
def type(self, dtype: str = None, non_blocking: bool = False) -> T: ... # noqa: E704
def cuda(self, device=None, non_blocking=False, **kwargs) -> T: ... # noqa: E704
def element_size(self) -> int: ... # noqa: E704
def get_device(self) -> int: ... # noqa: E704
# Defined in torch/csrc/generic/StorageSharing.cpp
def _share_filename_(self): ... # noqa: E704
def _share_fd_(self): ... # noqa: E704
@classmethod
def _new_using_filename(cls: Type[T], size: int) -> T: ... # noqa: E704
@classmethod
def _new_using_fd(cls: Type[T], size: int) -> T: ... # noqa: E704
def __str__(self):
content = ' ' + '\n '.join(str(self[i]) for i in range(len(self)))
return content + f'\n[{torch.typename(self)} of size {len(self)}]'
def __repr__(self):
return str(self)
def __iter__(self):
return iter(map(lambda i: self[i], range(self.size())))
def __copy__(self):
return self.clone()
def __deepcopy__(self, memo):
memo = memo.setdefault('torch', {})
if self._cdata in memo:
return memo[self._cdata]
new_storage = self.clone()
memo[self._cdata] = new_storage
return new_storage
def __reduce__(self):
b = io.BytesIO()
torch.save(self, b, _use_new_zipfile_serialization=False)
return (_load_from_bytes, (b.getvalue(),))
def __sizeof__(self):
return super(_StorageBase, self).__sizeof__() + self.element_size() * self.size()
def clone(self):
"""Returns a copy of this storage"""
device = self.get_device() if self.is_cuda else -1
with torch.cuda.device(device):
return type(self)(self.size()).copy_(self)
def tolist(self):
"""Returns a list containing the elements of this storage"""
return list(self)
def cpu(self):
"""Returns a CPU copy of this storage if it's not already on the CPU"""
return self.type(getattr(torch, self.__class__.__name__))
def double(self):
"""Casts this storage to double type"""
return self.type(type(self).__module__ + '.DoubleStorage')
def float(self):
"""Casts this storage to float type"""
return self.type(type(self).__module__ + '.FloatStorage')
def half(self):
"""Casts this storage to half type"""
return self.type(type(self).__module__ + '.HalfStorage')
def long(self):
"""Casts this storage to long type"""
return self.type(type(self).__module__ + '.LongStorage')
def int(self):
"""Casts this storage to int type"""
return self.type(type(self).__module__ + '.IntStorage')
def short(self):
"""Casts this storage to short type"""
return self.type(type(self).__module__ + '.ShortStorage')
def char(self):
"""Casts this storage to char type"""
return self.type(type(self).__module__ + '.CharStorage')
def byte(self):
"""Casts this storage to byte type"""
return self.type(type(self).__module__ + '.ByteStorage')
def bool(self):
"""Casts this storage to bool type"""
return self.type(type(self).__module__ + '.BoolStorage')
def bfloat16(self):
"""Casts this storage to bfloat16 type"""
return self.type(type(self).__module__ + '.BFloat16Storage')
def complex_double(self):
"""Casts this storage to complex double type"""
return self.type(type(self).__module__ + '.ComplexDoubleStorage')
def complex_float(self):
"""Casts this storage to complex float type"""
return self.type(type(self).__module__ + '.ComplexFloatStorage')
def pin_memory(self):
"""Copies the storage to pinned memory, if it's not already pinned."""
if self.is_cuda:
raise TypeError(f"cannot pin '{self.type()}' only CPU memory can be pinned")
import torch.cuda
allocator = torch.cuda._host_allocator() # type: ignore[attr-defined]
return type(self)(self.size(), allocator=allocator).copy_(self)
def share_memory_(self):
"""Moves the storage to shared memory.
This is a no-op for storages already in shared memory and for CUDA
storages, which do not need to be moved for sharing across processes.
Storages in shared memory cannot be resized.
Returns: self
"""
from torch.multiprocessing import get_sharing_strategy
if self.is_cuda:
pass # CUDA doesn't use POSIX shared memory
elif get_sharing_strategy() == 'file_system':
self._share_filename_()
else:
self._share_fd_()
return self
@classmethod
def _new_shared(cls, size):
"""Creates a new storage in shared memory with the same data type"""
from torch.multiprocessing import get_sharing_strategy
if cls.is_cuda:
return cls(size)
elif get_sharing_strategy() == 'file_system':
return cls._new_using_filename(size)
else:
return cls._new_using_fd(size)
def _load_from_bytes(b):
return torch.load(io.BytesIO(b))
_StorageBase.type = _type # type: ignore[assignment]
_StorageBase.cuda = _cuda # type: ignore[assignment]