torch.jit.isinstance¶
-
torch.jit.
isinstance
(obj, target_type)[source]¶ This function provides for conatiner type refinement in TorchScript. It can refine parameterized containers of the List, Dict, Tuple, and Optional types. E.g.
List[str]
,Dict[str, List[torch.Tensor]]
,Optional[Tuple[int,str,int]]
. It can also refine basic types such as bools and ints that are available in TorchScript.- Parameters
obj – object to refine the type of
target_type – type to try to refine obj to
- Returns
- True if obj was successfully refined to the type of target_type,
False otherwise with no new type refinement
- Return type
bool
Example (using
torch.jit.isinstance
for type refinement): .. testcode:import torch from typing import Any, Dict, List class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__() def forward(self, input: Any): # note the Any type if torch.jit.isinstance(input, List[torch.Tensor]): for t in input: y = t.clamp(0, 0.5) elif torch.jit.isinstance(input, Dict[str, str]): for val in input.values(): print(val) m = torch.jit.script(MyModule()) x = [torch.rand(3,3), torch.rand(4,3)] m(x) y = {"key1":"val1","key2":"val2"} m(y)