Shortcuts

AdaptiveMaxPool1d

class torch.nn.AdaptiveMaxPool1d(output_size: Union[T, Tuple[T, ...]], return_indices: bool = False)[source]

Applies a 1D adaptive max pooling over an input signal composed of several input planes.

The output size is H, for any input size. The number of output features is equal to the number of input planes.

Parameters
  • output_size – the target output size H

  • return_indices – if True, will return the indices along with the outputs. Useful to pass to nn.MaxUnpool1d. Default: False

Examples

>>> # target output size of 5
>>> m = nn.AdaptiveMaxPool1d(5)
>>> input = torch.randn(1, 64, 8)
>>> output = m(input)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources