Shortcuts

Source code for torch.quantization.quantize


import copy
import itertools
import warnings

import torch
import torch.nn as nn
import torch.nn.intrinsic as nni
import torch.nn.quantized as nnq
import torch.nn.intrinsic.qat as nniqat

from .quantization_mappings import (get_dynamic_quant_module_mappings,
                                    get_static_quant_module_mappings,
                                    get_qat_module_mappings,
                                    get_qconfig_propagation_list)

from .custom_module_class_mappings import (
    is_custom_module_class,
    get_observed_custom_module_class,
    get_quantized_custom_module_class,
    mark_observed_custom_module,
    is_observed_custom_module,
)

from .stubs import DeQuantStub, QuantWrapper
from .qconfig import default_dynamic_qconfig, float16_dynamic_qconfig, float_qparams_dynamic_qconfig

def _propagate_qconfig_helper(module, qconfig_dict, allow_list=None,
                              qconfig_parent=None, prefix=''):
    r"""This is a helper function for `propagate_qconfig_`

    Args:
        module: input module
        qconfig_dict: dictionary that maps from name of submodule to quantization
                     configuration
        allow_list: list of quantizable modules
        qconfig_parent: quantization config of parent module, we will fallback to
                       this config when there is no specified config for current
                       module
        prefix: corresponding prefix of the current module, used as key in
                qconfig_dict

    Return:
        None, module is modified inplace with qconfig attached
    """
    # TODO: Add test
    if allow_list is None:
        allow_list = get_qconfig_propagation_list()

    module_qconfig = qconfig_dict.get(type(module), qconfig_parent)
    module_qconfig = qconfig_dict.get(prefix, module_qconfig)
    module_qconfig = getattr(module, 'qconfig', module_qconfig)

    module.qconfig = module_qconfig
    for name, child in module.named_children():
        module_prefix = prefix + '.' + name if prefix else name
        _propagate_qconfig_helper(child, qconfig_dict, allow_list,
                                  module_qconfig, module_prefix)

# TODO(jerryzh): expose allow_list
[docs]def propagate_qconfig_(module, qconfig_dict=None, allow_list=None): r"""Propagate qconfig through the module hierarchy and assign `qconfig` attribute on each leaf module Args: module: input module qconfig_dict: dictionary that maps from name or type of submodule to quantization configuration, qconfig applies to all submodules of a given module unless qconfig for the submodules are specified (when the submodule already has qconfig attribute) Return: None, module is modified inplace with qconfig attached """ if qconfig_dict is None: qconfig_dict = {} _propagate_qconfig_helper(module, qconfig_dict, allow_list)
def _observer_forward_hook(self, input, output): r"""Forward hook that calls observer on the output """ return self.activation_post_process(output) def _observer_forward_pre_hook(self, input): ''' Forward pre hook that calls observer on the input (can be a tuple of values) ''' self.activation_pre_process(*input) # Returning nothing is Ok, Module._call_impl will intrepret this # as the pre_hook making no changes to the input, as desired def register_activation_post_process_hook(module): assert hasattr(module, 'activation_post_process'), \ 'Expect activation_post_process attribut already attached to the module' return module.register_forward_hook(_observer_forward_hook)
[docs]def add_observer_(module, qconfig_propagation_list=None, non_leaf_module_list=None, device=None, prehook=None): r"""Add observer for the leaf child of the module. This function insert observer module to all leaf child module that has a valid qconfig attribute. Args: module: input module with qconfig attributes for all the leaf modules that we want to quantize device: parent device, if any non_leaf_module_list: list of non-leaf modules we want to add observer Return: None, module is modified inplace with added observer modules and forward_hooks """ if qconfig_propagation_list is None: qconfig_propagation_list = get_qconfig_propagation_list() # respect device affinity when adding observers if device is None: devices = get_unique_devices_(module) assert len(devices) <= 1, ( "add_observer_ only works with cpu or single-device CUDA modules, " "but got devices {}".format(devices) ) device = next(iter(devices)) if len(devices) > 0 else None def get_activation_post_process(qconfig, device): activation = qconfig.activation() if device is not None: activation.to(device) return activation def needs_observation(m): return hasattr(m, 'qconfig') and m.qconfig is not None def insert_activation_post_process(m): """ Adds an activation post process module and register a post hook that calls the module """ if needs_observation(m): # observer and hook will be gone after we swap the module m.add_module('activation_post_process', get_activation_post_process(m.qconfig, device)) # Register observer as the first entry in the hook list # All post forward hooks are preserved and will be executed after the observer before convert handle = register_activation_post_process_hook(m) m._forward_hooks.move_to_end(handle.id, last=False) for name, child in module.named_children(): if type(child) == nnq.FloatFunctional or type(child) == nnq.QFunctional: if hasattr(child, 'qconfig') and child.qconfig is not None: child.activation_post_process = get_activation_post_process(child.qconfig, device) elif non_leaf_module_list is not None and type(child) in non_leaf_module_list: insert_activation_post_process(child) # TODO: remove if needs_observation(child): # Attaching prehook if prehook is not None: child.add_module('activation_pre_process', prehook()) child.register_forward_pre_hook(_observer_forward_pre_hook) elif needs_observation(child) and is_custom_module_class(type(child)): observed_child = get_observed_custom_module_class(type(child)).from_float(child) mark_observed_custom_module(observed_child, type(child)) setattr(module, name, observed_child) insert_activation_post_process(observed_child) else: add_observer_(child, qconfig_propagation_list, non_leaf_module_list, device, prehook) # Insert observers only for leaf nodes, note that this observer is for # the output of the module, for input QuantStub will observe them if len(module._modules) == 0 and not isinstance(module, torch.nn.Sequential) \ and type(module) in qconfig_propagation_list: insert_activation_post_process(module) # TOOD: remove if needs_observation(module): # Attaching prehook if prehook is not None: module.add_module('activation_pre_process', prehook()) module.register_forward_pre_hook(_observer_forward_pre_hook)
def get_unique_devices_(module): return {p.device for p in module.parameters()} | \ {p.device for p in module.buffers()}
[docs]def add_quant_dequant(module): r"""Wrap the leaf child module in QuantWrapper if it has a valid qconfig Note that this function will modify the children of module inplace and it can return a new module which wraps the input module as well. Args: module: input module with qconfig attributes for all the leaf modules that we want to quantize Return: Either the inplace modified module with submodules wrapped in `QuantWrapper` based on qconfig or a new `QuantWrapper` module which wraps the input module, the latter case only happens when the input module is a leaf module and we want to quantize it. """ if len(module._modules) == 0 and hasattr(module, 'qconfig') and module.qconfig: return QuantWrapper(module) for name, child in module.named_children(): module._modules[name] = add_quant_dequant(child) return module
[docs]def prepare(model, inplace=False, allow_list=None, observer_non_leaf_module_list=None, prehook=None): r"""Prepares a copy of the model for quantization calibration or quantization-aware training. Quantization configuration should be assigned preemptively to individual submodules in `.qconfig` attribute. The model will be attached with observer or fake quant modules, and qconfig will be propagated. Args: model: input model to be modified in-place inplace: carry out model transformations in-place, the original module is mutated allow_list: list of quantizable modules observer_non_leaf_module_list: list of non-leaf modules we want to add observer prehook: observer we want to add to forward_pre_hook """ if not inplace: model = copy.deepcopy(model) qconfig_propagation_list = allow_list if qconfig_propagation_list is None: qconfig_propagation_list = get_qconfig_propagation_list() propagate_qconfig_(model, qconfig_dict=None) # sanity check common API misusage if not any(hasattr(m, 'qconfig') and m.qconfig for m in model.modules()): warnings.warn("None of the submodule got qconfig applied. Make sure you " "passed correct configuration through `qconfig_dict` or " "by assigning the `.qconfig` attribute directly on submodules") add_observer_(model, qconfig_propagation_list, observer_non_leaf_module_list, prehook=prehook) return model
def _remove_qconfig(module): r"""Clean up the qconfig left in the module so that new qconfig can be propagated. Args: module: module to be cleaned up """ for child in module.children(): _remove_qconfig(child) if hasattr(module, "qconfig"): del module.qconfig
[docs]def quantize(model, run_fn, run_args, mapping=None, inplace=False): r"""Quantize the input float model with post training static quantization. First it will prepare the model for calibration, then it calls `run_fn` which will run the calibration step, after that we will convert the model to a quantized model. Args: model: input float model run_fn: a calibration function for calibrating the prepared model run_args: positional arguments for `run_fn` inplace: carry out model transformations in-place, the original module is mutated mapping: correspondence between original module types and quantized counterparts Return: Quantized model. """ if mapping is None: mapping = get_static_quant_module_mappings() if not inplace: model = copy.deepcopy(model) model.eval() prepare(model, inplace=True) run_fn(model, run_args) convert(model, mapping, inplace=True) return model
[docs]def quantize_dynamic(model, qconfig_spec=None, dtype=torch.qint8, mapping=None, inplace=False): r"""Converts a float model to dynamic (i.e. weights-only) quantized model. Replaces specified modules with dynamic weight-only quantized versions and output the quantized model. For simplest usage provide `dtype` argument that can be float16 or qint8. Weight-only quantization by default is performed for layers with large weights size - i.e. Linear and RNN variants. Fine grained control is possible with `qconfig` and `mapping` that act similarly to `quantize()`. If `qconfig` is provided, the `dtype` argument is ignored. Args: model: input model qconfig_spec: Either: - A dictionary that maps from name or type of submodule to quantization configuration, qconfig applies to all submodules of a given module unless qconfig for the submodules are specified (when the submodule already has qconfig attribute). Entries in the dictionary need to be QConfigDynamic instances. - A set of types and/or submodule names to apply dynamic quantization to, in which case the `dtype` argument is used to specify the bit-width inplace: carry out model transformations in-place, the original module is mutated mapping: maps type of a submodule to a type of corresponding dynamically quantized version with which the submodule needs to be replaced """ if qconfig_spec is None: if dtype == torch.qint8: qconfig_spec = { nn.Linear : default_dynamic_qconfig, nn.LSTM : default_dynamic_qconfig, nn.GRU : default_dynamic_qconfig, nn.LSTMCell : default_dynamic_qconfig, nn.RNNCell : default_dynamic_qconfig, nn.GRUCell : default_dynamic_qconfig, } elif dtype == torch.float16: qconfig_spec = { nn.Linear : float16_dynamic_qconfig, nn.LSTM : float16_dynamic_qconfig, nn.GRU : float16_dynamic_qconfig, nn.LSTMCell : float16_dynamic_qconfig, nn.RNNCell : float16_dynamic_qconfig, nn.GRUCell : float16_dynamic_qconfig, } elif dtype == torch.quint8: qconfig_spec = { nn.EmbeddingBag : float_qparams_dynamic_qconfig, } else: raise ValueError( "Don't know how to quantize with default settings for {}. Provide full qconfig please".format(dtype)) elif isinstance(qconfig_spec, set): if dtype is torch.qint8: default_qconfig = default_dynamic_qconfig elif dtype is torch.float16: default_qconfig = float16_dynamic_qconfig elif dtype is torch.quint8: default_qconfig = float_qparams_dynamic_qconfig else: raise RuntimeError('Unknown dtype specified for quantize_dynamic: ', str(dtype)) qconfig_spec = dict(zip(qconfig_spec, itertools.repeat(default_qconfig))) if mapping is None: mapping = get_dynamic_quant_module_mappings() if not inplace: model = copy.deepcopy(model) model.eval() propagate_qconfig_(model, qconfig_spec) convert(model, mapping, inplace=True) return model
[docs]def prepare_qat(model, mapping=None, inplace=False): r""" Prepares a copy of the model for quantization calibration or quantization-aware training and converts it to quantized version. Quantization configuration should be assigned preemptively to individual submodules in `.qconfig` attribute. Args: model: input model to be modified in-place mapping: dictionary that maps float modules to quantized modules to be replaced. inplace: carry out model transformations in-place, the original module is mutated """ if mapping is None: mapping = get_qat_module_mappings() if not inplace: model = copy.deepcopy(model) propagate_qconfig_(model, qconfig_dict=None) convert(model, mapping=mapping, inplace=True, remove_qconfig=False) prepare(model, observer_non_leaf_module_list=set(mapping.values()), inplace=True) return model
[docs]def quantize_qat(model, run_fn, run_args, inplace=False): r"""Do quantization aware training and output a quantized model Args: model: input model run_fn: a function for evaluating the prepared model, can be a function that simply runs the prepared model or a training loop run_args: positional arguments for `run_fn` Return: Quantized model. """ if not inplace: model = copy.deepcopy(model) model.train() prepare_qat(model, inplace=True) run_fn(model, run_args) convert(model, inplace=True) return model
[docs]def convert(module, mapping=None, inplace=False, remove_qconfig=True): r"""Converts submodules in input module to a different module according to `mapping` by calling `from_float` method on the target module class. And remove qconfig at the end if remove_qconfig is set to True. Args: module: input module mapping: a dictionary that maps from source module type to target module type, can be overwritten to allow swapping user defined Modules inplace: carry out model transformations in-place, the original module is mutated """ if not inplace: module = copy.deepcopy(module) _convert(module, mapping, inplace=True) if remove_qconfig: _remove_qconfig(module) return module
def _convert(module, mapping=None, inplace=False): r"""Converts submodules in input module to a different module according to `mapping` by calling `from_float` method on the target module class Args: module: input module mapping: a dictionary that maps from source module type to target module type, can be overwritten to allow swapping user defined Modules inplace: carry out model transformations in-place, the original module is mutated """ if mapping is None: mapping = get_static_quant_module_mappings() if not inplace: module = copy.deepcopy(module) reassign = {} # TODO(jerryzh): remove after deciding on the impl of intrinsic modules # This is required because intrinsic modules right now are implemented as # nn.Sequential and we don't want to swap their constituents SWAPPABLE_MODULES = (nni.ConvBn2d, nni.ConvBnReLU2d, nni.LinearReLU, nni.BNReLU2d, nni.BNReLU3d, nni.ConvBn1d, nni.ConvReLU1d, nni.ConvBnReLU1d, nni.ConvReLU2d, nni.ConvReLU3d, nniqat.ConvBn2d, nniqat.ConvBnReLU2d) for name, mod in module.named_children(): # both swappable modules and observed custom modules are # swapped as one unit if type(mod) not in SWAPPABLE_MODULES and \ not is_observed_custom_module(mod): _convert(mod, mapping, inplace=True) reassign[name] = swap_module(mod, mapping) for key, value in reassign.items(): module._modules[key] = value return module
[docs]def swap_module(mod, mapping): r"""Swaps the module if it has a quantized counterpart and it has an `observer` attached. Args: mod: input module mapping: a dictionary that maps from nn module to nnq module Return: The corresponding quantized module of `mod` """ new_mod = mod # Always replace dequantstub with dequantize if hasattr(mod, 'qconfig') and mod.qconfig is not None or type(mod) == DeQuantStub: swapped = False if is_observed_custom_module(mod): new_mod = get_quantized_custom_module_class(mod._FLOAT_MODULE).from_observed(mod) swapped = True elif type(mod) in mapping: new_mod = mapping[type(mod)].from_float(mod) swapped = True if swapped: # Preserve module's pre forward hooks. They'll be called on quantized input for pre_hook_fn in mod._forward_pre_hooks.values(): new_mod.register_forward_pre_hook(pre_hook_fn) # Preserve module's post forward hooks except _observer_forward_hook # After convert they'll work with quantized output for hook_fn in mod._forward_hooks.values(): if hook_fn is not _observer_forward_hook: new_mod.register_forward_hook(hook_fn) # respect device affinity when swapping modules devices = get_unique_devices_(mod) assert len(devices) <= 1, ( "swap_module only works with cpu or single-device CUDA modules, " "but got devices {}".format(devices) ) device = next(iter(devices)) if len(devices) > 0 else None if device: new_mod.to(device) return new_mod
[docs]def get_observer_dict(mod, target_dict, prefix=""): r"""Traverse the modules and save all observers into dict. This is mainly used for quantization accuracy debug Args: mod: the top module we want to save all observers prefix: the prefix for the current module target_dict: the dictionary used to save all the observers """ def get_prefix(prefix): return prefix if prefix == "" else prefix + '.' if hasattr(mod, 'activation_post_process'): target_dict[get_prefix(prefix) + 'activation_post_process'] = mod.activation_post_process for name, child in mod.named_children(): module_prefix = get_prefix(prefix) + name if prefix else name get_observer_dict(child, target_dict, module_prefix)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources