torchvision.transforms ====================== .. currentmodule:: torchvision.transforms Transforms are common image transformations. They can be chained together using :class:`Compose`. Additionally, there is the :mod:`torchvision.transforms.functional` module. Functional transforms give fine-grained control over the transformations. This is useful if you have to build a more complex transformation pipeline (e.g. in the case of segmentation tasks). .. autoclass:: Compose Transforms on PIL Image ----------------------- .. autoclass:: CenterCrop .. autoclass:: ColorJitter .. autoclass:: FiveCrop .. autoclass:: Grayscale .. autoclass:: Pad .. autoclass:: RandomAffine .. autoclass:: RandomApply .. autoclass:: RandomChoice .. autoclass:: RandomCrop .. autoclass:: RandomGrayscale .. autoclass:: RandomHorizontalFlip .. autoclass:: RandomOrder .. autoclass:: RandomPerspective .. autoclass:: RandomResizedCrop .. autoclass:: RandomRotation .. autoclass:: RandomSizedCrop .. autoclass:: RandomVerticalFlip .. autoclass:: Resize .. autoclass:: Scale .. autoclass:: TenCrop Transforms on torch.\*Tensor ---------------------------- .. autoclass:: LinearTransformation .. autoclass:: Normalize :members: __call__ :special-members: .. autoclass:: RandomErasing Conversion Transforms --------------------- .. autoclass:: ToPILImage :members: __call__ :special-members: .. autoclass:: ToTensor :members: __call__ :special-members: Generic Transforms ------------------ .. autoclass:: Lambda Functional Transforms --------------------- Functional transforms give you fine-grained control of the transformation pipeline. As opposed to the transformations above, functional transforms don't contain a random number generator for their parameters. That means you have to specify/generate all parameters, but you can reuse the functional transform. Example: you can apply a functional transform with the same parameters to multiple images like this: .. code:: python import torchvision.transforms.functional as TF import random def my_segmentation_transforms(image, segmentation): if random.random() > 0.5: angle = random.randint(-30, 30) image = TF.rotate(image, angle) segmentation = TF.rotate(segmentation, angle) # more transforms ... return image, segmentation Example: you can use a functional transform to build transform classes with custom behavior: .. code:: python import torchvision.transforms.functional as TF import random class MyRotationTransform: """Rotate by one of the given angles.""" def __init__(self, angles): self.angles = angles def __call__(self, x): angle = random.choice(self.angles) return TF.rotate(x, angle) rotation_transform = MyRotationTransform(angles=[-30, -15, 0, 15, 30]) .. automodule:: torchvision.transforms.functional :members: