Shortcuts

Source code for torch.nn.quantized.modules.linear

from __future__ import absolute_import, division, print_function, unicode_literals

import torch

from torch._jit_internal import Optional  # noqa: F401
import torch.nn as nn
import torch.nn.intrinsic as nni
from torch.nn.modules import Module
from torch.nn.quantized.modules.utils import _quantize_weight

[docs]class Quantize(Module): r"""Quantizes an incoming tensor Args: `out_scale`: scale of the output Quantized Tensor `out_zero_point`: zero_point of output Quantized Tensor `out_dtype`: data type of output Quantized Tensor Attributes: `out_scale`, `out_zero_point`, `out_dtype` Examples:: >>> t = torch.tensor([[1., -1.], [1., -1.]]) >>> scale, zero_point, dtype = 1.0, 2, torch.qint8 >>> qm = Quantize(scale, zero_point, dtype) >>> qt = qm(t) >>> print(qt) tensor([[ 1., -1.], [ 1., -1.]], size=(2, 2), dtype=torch.qint8, scale=1.0, zero_point=2) """ def __init__(self, scale, zero_point, dtype): super(Quantize, self).__init__() self.register_buffer('scale', torch.tensor([scale])) self.register_buffer('zero_point', torch.tensor([zero_point], dtype=torch.long)) self.dtype = dtype def forward(self, X): return torch.quantize_per_tensor(X, float(self.scale), int(self.zero_point), self.dtype) @staticmethod def from_float(mod): assert hasattr(mod, 'observer') scale, zero_point = mod.observer.calculate_qparams() return Quantize(scale.float().item(), zero_point.long().item(), mod.observer.dtype) def extra_repr(self): return 'scale={}, zero_point={}, dtype={}'.format(self.scale, self.zero_point, self.dtype)
[docs]class DeQuantize(Module): r"""Dequantizes an incoming tensor Examples:: >>> input = torch.tensor([[1., -1.], [1., -1.]]) >>> scale, zero_point, dtype = 1.0, 2, torch.qint8 >>> qm = Quantize(scale, zero_point, dtype) >>> quantized_input = qm(input) >>> dqm = DeQuantize() >>> dequantized = dqm(quantized_input) >>> print(dequantized) tensor([[ 1., -1.], [ 1., -1.]], dtype=torch.float32) """ def __init__(self): super(DeQuantize, self).__init__() def forward(self, Xq): return Xq.dequantize() @staticmethod def from_float(mod): return DeQuantize()
[docs]class Linear(torch.nn.Module): r""" A quantized linear module with quantized tensor as inputs and outputs. We adopt the same interface as `torch.nn.Linear`, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation. Similar to :class:`~torch.nn.Linear`, attributes will be randomly initialized at module creation time and will be overwritten later Attributes: weight (Tensor): the non-learnable quantized weights of the module of shape :math:`(\text{out\_features}, \text{in\_features})`. bias (Tensor): the non-learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized to zero. scale: `scale` parameter of output Quantized Tensor, type: double zero_point: `zero_point` parameter for output Quantized Tensor, type: long Examples:: >>> m = nn.quantized.Linear(20, 30) >>> input = torch.randn(128, 20) >>> input = torch.quantize_per_tensor(input, 1.0, 0, torch.quint8) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) """ _FLOAT_MODULE = nn.Linear def __init__(self, in_features, out_features, bias_=True): super(Linear, self).__init__() # We don't muck around with buffers or attributes or anything here # to keep the module simple. *everything* is simply a Python attribute. # Serialization logic is explicitly handled in the below serialization and # deserialization modules self.in_features = in_features self.out_features = out_features bias = None if bias_: bias = torch.zeros(out_features, dtype=torch.float) qweight = torch._empty_affine_quantized( [out_features, in_features], scale=1, zero_point=0, dtype=torch.qint8) self.set_weight_bias(qweight, bias) self.scale = 1.0 self.zero_point = 0 def _get_name(self): return 'QuantizedLinear' def extra_repr(self): return 'in_features={}, out_features={}, scale={}, zero_point={}'.format( self.in_features, self.out_features, self.scale, self.zero_point ) def forward(self, x): return torch.ops.quantized.linear( x, self._packed_params, self.scale, self.zero_point) # ===== Serialization methods ===== # The special consideration here is that we have to unpack the weights into their # regular QTensor form for serialization. Packed weights should not live # outside the process in which they were created, rather they should be derived # from the QTensor weight. def _save_to_state_dict(self, destination, prefix, keep_vars): super(Linear, self)._save_to_state_dict(destination, prefix, keep_vars) (w, b) = self._weight_bias() destination[prefix + 'weight'] = w destination[prefix + 'scale'] = torch.tensor(self.scale) destination[prefix + 'zero_point'] = torch.tensor(self.zero_point) destination[prefix + 'bias'] = b @torch.jit.export def __getstate__(self): if not torch.jit.is_scripting(): raise RuntimeError('torch.save() is not currently supported for quantized modules.' ' See https://github.com/pytorch/pytorch/issues/24045.' ' Please use state_dict or torch.jit serialization.') (w, b) = self._weight_bias() return ( self.in_features, self.out_features, b, w, self.scale, self.zero_point, self.training ) # ===== Deserialization methods ===== # Counterpart to the serialization methods, we must pack the serialized QTensor # weight into its packed format for use by the FBGEMM ops. def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): self.set_weight_bias(state_dict[prefix + 'weight'], state_dict[prefix + 'bias']) state_dict.pop(prefix + 'weight') state_dict.pop(prefix + 'bias') self.scale = float(state_dict[prefix + 'scale']) state_dict.pop(prefix + 'scale') self.zero_point = int(state_dict[prefix + 'zero_point']) state_dict.pop(prefix + 'zero_point') super(Linear, self)._load_from_state_dict(state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) @torch.jit.export def __setstate__(self, state): # type: (Tuple[int, int, Optional[torch.Tensor], torch.Tensor, float, int, bool]) -> None self.in_features = state[0] self.out_features = state[1] self.set_weight_bias(state[3], state[2]) self.scale = state[4] self.zero_point = state[5] self.training = state[6] # Function rather than property to make sure that JIT serialization doesn't # register this as an attribute def _weight_bias(self): return torch.ops.quantized.linear_unpack(self._packed_params) def weight(self): (w, b) = torch.ops.quantized.linear_unpack(self._packed_params) return w def bias(self): (w, b) = torch.ops.quantized.linear_unpack(self._packed_params) return b def set_weight_bias(self, w, b): # type: (torch.Tensor, Optional[torch.Tensor]) -> None self._packed_params = torch.ops.quantized.linear_prepack(w, b)
[docs] @classmethod def from_float(cls, mod): r"""Create a quantized module from a float module or qparams_dict Args: mod (Module): a float module, either produced by torch.quantization utilities or provided by the user """ if hasattr(mod, 'weight_fake_quant'): # assert type(mod) == QATLinear, 'training mode nnq.Linear.from_float only works for nn.qat.Linear' weight_observer = mod.weight_fake_quant activation_observer = mod.observer else: assert type(mod) == cls._FLOAT_MODULE, ' nnq.' + cls.__name__ + '.from_float only works for ' + \ cls._FLOAT_MODULE.__name__ assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined' if type(mod) == nni.LinearReLU: activation_observer = mod[1].observer mod = mod[0] else: activation_observer = mod.observer weight_observer = mod.qconfig.weight() weight_observer(mod.weight) act_scale, act_zp = activation_observer.calculate_qparams() assert weight_observer.dtype == torch.qint8, 'Weight observer must have dtype torch.qint8' qweight = _quantize_weight(mod.weight.float(), weight_observer) qlinear = cls(mod.in_features, mod.out_features) qlinear.set_weight_bias(qweight, mod.bias) qlinear.scale = float(act_scale) qlinear.zero_point = int(act_zp) return qlinear

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources