Shortcuts

Source code for torchvision.models.googlenet

import warnings
from collections import namedtuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from .utils import load_state_dict_from_url

__all__ = ['GoogLeNet', 'googlenet']

model_urls = {
    # GoogLeNet ported from TensorFlow
    'googlenet': 'https://download.pytorch.org/models/googlenet-1378be20.pth',
}

_GoogLeNetOutputs = namedtuple('GoogLeNetOutputs', ['logits', 'aux_logits2', 'aux_logits1'])


[docs]def googlenet(pretrained=False, progress=True, **kwargs): r"""GoogLeNet (Inception v1) model architecture from `"Going Deeper with Convolutions" <http://arxiv.org/abs/1409.4842>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr aux_logits (bool): If True, adds two auxiliary branches that can improve training. Default: *False* when pretrained is True otherwise *True* transform_input (bool): If True, preprocesses the input according to the method with which it was trained on ImageNet. Default: *False* """ if pretrained: if 'transform_input' not in kwargs: kwargs['transform_input'] = True if 'aux_logits' not in kwargs: kwargs['aux_logits'] = False if kwargs['aux_logits']: warnings.warn('auxiliary heads in the pretrained googlenet model are NOT pretrained, ' 'so make sure to train them') original_aux_logits = kwargs['aux_logits'] kwargs['aux_logits'] = True kwargs['init_weights'] = False model = GoogLeNet(**kwargs) state_dict = load_state_dict_from_url(model_urls['googlenet'], progress=progress) model.load_state_dict(state_dict) if not original_aux_logits: model.aux_logits = False del model.aux1, model.aux2 return model return GoogLeNet(**kwargs)
class GoogLeNet(nn.Module): def __init__(self, num_classes=1000, aux_logits=True, transform_input=False, init_weights=True): super(GoogLeNet, self).__init__() self.aux_logits = aux_logits self.transform_input = transform_input self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3) self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.conv2 = BasicConv2d(64, 64, kernel_size=1) self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1) self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32) self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64) self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64) self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64) self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64) self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64) self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128) self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128) self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128) if aux_logits: self.aux1 = InceptionAux(512, num_classes) self.aux2 = InceptionAux(528, num_classes) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.dropout = nn.Dropout(0.2) self.fc = nn.Linear(1024, num_classes) if init_weights: self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): import scipy.stats as stats X = stats.truncnorm(-2, 2, scale=0.01) values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype) values = values.view(m.weight.size()) with torch.no_grad(): m.weight.copy_(values) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): if self.transform_input: x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 x = torch.cat((x_ch0, x_ch1, x_ch2), 1) # N x 3 x 224 x 224 x = self.conv1(x) # N x 64 x 112 x 112 x = self.maxpool1(x) # N x 64 x 56 x 56 x = self.conv2(x) # N x 64 x 56 x 56 x = self.conv3(x) # N x 192 x 56 x 56 x = self.maxpool2(x) # N x 192 x 28 x 28 x = self.inception3a(x) # N x 256 x 28 x 28 x = self.inception3b(x) # N x 480 x 28 x 28 x = self.maxpool3(x) # N x 480 x 14 x 14 x = self.inception4a(x) # N x 512 x 14 x 14 if self.training and self.aux_logits: aux1 = self.aux1(x) x = self.inception4b(x) # N x 512 x 14 x 14 x = self.inception4c(x) # N x 512 x 14 x 14 x = self.inception4d(x) # N x 528 x 14 x 14 if self.training and self.aux_logits: aux2 = self.aux2(x) x = self.inception4e(x) # N x 832 x 14 x 14 x = self.maxpool4(x) # N x 832 x 7 x 7 x = self.inception5a(x) # N x 832 x 7 x 7 x = self.inception5b(x) # N x 1024 x 7 x 7 x = self.avgpool(x) # N x 1024 x 1 x 1 x = torch.flatten(x, 1) # N x 1024 x = self.dropout(x) x = self.fc(x) # N x 1000 (num_classes) if self.training and self.aux_logits: return _GoogLeNetOutputs(x, aux2, aux1) return x class Inception(nn.Module): def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj): super(Inception, self).__init__() self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1) self.branch2 = nn.Sequential( BasicConv2d(in_channels, ch3x3red, kernel_size=1), BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1) ) self.branch3 = nn.Sequential( BasicConv2d(in_channels, ch5x5red, kernel_size=1), BasicConv2d(ch5x5red, ch5x5, kernel_size=3, padding=1) ) self.branch4 = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True), BasicConv2d(in_channels, pool_proj, kernel_size=1) ) def forward(self, x): branch1 = self.branch1(x) branch2 = self.branch2(x) branch3 = self.branch3(x) branch4 = self.branch4(x) outputs = [branch1, branch2, branch3, branch4] return torch.cat(outputs, 1) class InceptionAux(nn.Module): def __init__(self, in_channels, num_classes): super(InceptionAux, self).__init__() self.conv = BasicConv2d(in_channels, 128, kernel_size=1) self.fc1 = nn.Linear(2048, 1024) self.fc2 = nn.Linear(1024, num_classes) def forward(self, x): # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14 x = F.adaptive_avg_pool2d(x, (4, 4)) # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4 x = self.conv(x) # N x 128 x 4 x 4 x = torch.flatten(x, 1) # N x 2048 x = F.relu(self.fc1(x), inplace=True) # N x 1024 x = F.dropout(x, 0.7, training=self.training) # N x 1024 x = self.fc2(x) # N x 1000 (num_classes) return x class BasicConv2d(nn.Module): def __init__(self, in_channels, out_channels, **kwargs): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) x = self.bn(x) return F.relu(x, inplace=True)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources