Source code for torchvision.datasets.hmdb51
import glob
import os
from .video_utils import VideoClips
from .utils import list_dir
from .folder import make_dataset
from .vision import VisionDataset
[docs]class HMDB51(VisionDataset):
"""
HMDB51 <http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/>`_
dataset.
HMDB51 is an action recognition video dataset.
This dataset consider every video as a collection of video clips of fixed size, specified
by ``frames_per_clip``, where the step in frames between each clip is given by
``step_between_clips``.
To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5``
and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two
elements will come from video 1, and the next three elements from video 2.
Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all
frames in a video might be present.
Internally, it uses a VideoClips object to handle clip creation.
Args:
root (string): Root directory of the HMDB51 Dataset.
annotation_path (str): path to the folder containing the split files
frames_per_clip (int): number of frames in a clip.
step_between_clips (int): number of frames between each clip.
fold (int, optional): which fold to use. Should be between 1 and 3.
train (bool, optional): if ``True``, creates a dataset from the train split,
otherwise from the ``test`` split.
transform (callable, optional): A function/transform that takes in a TxHxWxC video
and returns a transformed version.
Returns:
video (Tensor[T, H, W, C]): the `T` video frames
audio(Tensor[K, L]): the audio frames, where `K` is the number of channels
and `L` is the number of points
label (int): class of the video clip
"""
data_url = "http://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/hmdb51_org.rar"
splits = {
"url": "http://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/test_train_splits.rar",
"md5": "15e67781e70dcfbdce2d7dbb9b3344b5"
}
def __init__(self, root, annotation_path, frames_per_clip, step_between_clips=1,
fold=1, train=True, transform=None):
super(HMDB51, self).__init__(root)
if not 1 <= fold <= 3:
raise ValueError("fold should be between 1 and 3, got {}".format(fold))
extensions = ('avi',)
self.fold = fold
self.train = train
classes = list(sorted(list_dir(root)))
class_to_idx = {classes[i]: i for i in range(len(classes))}
self.samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file=None)
self.classes = classes
video_list = [x[0] for x in self.samples]
video_clips = VideoClips(video_list, frames_per_clip, step_between_clips)
indices = self._select_fold(video_list, annotation_path, fold, train)
self.video_clips = video_clips.subset(indices)
self.transform = transform
def _select_fold(self, video_list, annotation_path, fold, train):
target_tag = 1 if train else 2
name = "*test_split{}.txt".format(fold)
files = glob.glob(os.path.join(annotation_path, name))
selected_files = []
for f in files:
with open(f, "r") as fid:
data = fid.readlines()
data = [x.strip().split(" ") for x in data]
data = [x[0] for x in data if int(x[1]) == target_tag]
selected_files.extend(data)
selected_files = set(selected_files)
indices = [i for i in range(len(video_list)) if os.path.basename(video_list[i]) in selected_files]
return indices
def __len__(self):
return self.video_clips.num_clips()
def __getitem__(self, idx):
video, audio, info, video_idx = self.video_clips.get_clip(idx)
label = self.samples[video_idx][1]
if self.transform is not None:
video = self.transform(video)
return video, audio, label