Shortcuts

Source code for torch.nn.modules.activation

import warnings
import torch
from . import Linear
from torch.nn.init import xavier_uniform_
from torch.nn.init import constant_
from torch.nn.init import xavier_normal_
from torch.nn.parameter import Parameter
from .module import Module
from .. import functional as F
from ..._jit_internal import weak_module, weak_script_method


[docs]@weak_module class Threshold(Module): r"""Thresholds each element of the input Tensor. Threshold is defined as: .. math:: y = \begin{cases} x, &\text{ if } x > \text{threshold} \\ \text{value}, &\text{ otherwise } \end{cases} Args: threshold: The value to threshold at value: The value to replace with inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input Examples:: >>> m = nn.Threshold(0.1, 20) >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['threshold', 'value', 'inplace'] def __init__(self, threshold, value, inplace=False): super(Threshold, self).__init__() self.threshold = threshold self.value = value self.inplace = inplace # TODO: check in THNN (if inplace == True, then assert value <= threshold) @weak_script_method def forward(self, input): return F.threshold(input, self.threshold, self.value, self.inplace) def extra_repr(self): inplace_str = ', inplace' if self.inplace else '' return 'threshold={}, value={}{}'.format( self.threshold, self.value, inplace_str )
[docs]@weak_module class ReLU(Module): r"""Applies the rectified linear unit function element-wise: :math:`\text{ReLU}(x)= \max(0, x)` Args: inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/ReLU.png Examples:: >>> m = nn.ReLU() >>> input = torch.randn(2) >>> output = m(input) An implementation of CReLU - https://arxiv.org/abs/1603.05201 >>> m = nn.ReLU() >>> input = torch.randn(2).unsqueeze(0) >>> output = torch.cat((m(input),m(-input))) """ __constants__ = ['inplace'] def __init__(self, inplace=False): super(ReLU, self).__init__() self.inplace = inplace @weak_script_method def forward(self, input): return F.relu(input, inplace=self.inplace) def extra_repr(self): inplace_str = 'inplace' if self.inplace else '' return inplace_str
[docs]@weak_module class RReLU(Module): r"""Applies the randomized leaky rectified liner unit function, element-wise, as described in the paper: `Empirical Evaluation of Rectified Activations in Convolutional Network`_. The function is defined as: .. math:: \text{RReLU}(x) = \begin{cases} x & \text{if } x \geq 0 \\ ax & \text{ otherwise } \end{cases} where :math:`a` is randomly sampled from uniform distribution :math:`\mathcal{U}(\text{lower}, \text{upper})`. See: https://arxiv.org/pdf/1505.00853.pdf Args: lower: lower bound of the uniform distribution. Default: :math:`\frac{1}{8}` upper: upper bound of the uniform distribution. Default: :math:`\frac{1}{3}` inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input Examples:: >>> m = nn.RReLU(0.1, 0.3) >>> input = torch.randn(2) >>> output = m(input) .. _`Empirical Evaluation of Rectified Activations in Convolutional Network`: https://arxiv.org/abs/1505.00853 """ __constants__ = ['lower', 'upper', 'inplace'] def __init__(self, lower=1. / 8, upper=1. / 3, inplace=False): super(RReLU, self).__init__() self.lower = lower self.upper = upper self.inplace = inplace @weak_script_method def forward(self, input): return F.rrelu(input, self.lower, self.upper, self.training, self.inplace) def extra_repr(self): inplace_str = ', inplace' if self.inplace else '' return 'lower={}, upper={}{}'.format(self.lower, self.upper, inplace_str)
[docs]@weak_module class Hardtanh(Module): r"""Applies the HardTanh function element-wise HardTanh is defined as: .. math:: \text{HardTanh}(x) = \begin{cases} 1 & \text{ if } x > 1 \\ -1 & \text{ if } x < -1 \\ x & \text{ otherwise } \\ \end{cases} The range of the linear region :math:`[-1, 1]` can be adjusted using :attr:`min_val` and :attr:`max_val`. Args: min_val: minimum value of the linear region range. Default: -1 max_val: maximum value of the linear region range. Default: 1 inplace: can optionally do the operation in-place. Default: ``False`` Keyword arguments :attr:`min_value` and :attr:`max_value` have been deprecated in favor of :attr:`min_val` and :attr:`max_val`. Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/Hardtanh.png Examples:: >>> m = nn.Hardtanh(-2, 2) >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['min_val', 'max_val', 'inplace'] def __init__(self, min_val=-1., max_val=1., inplace=False, min_value=None, max_value=None): super(Hardtanh, self).__init__() if min_value is not None: warnings.warn("keyword argument min_value is deprecated and renamed to min_val") min_val = min_value if max_value is not None: warnings.warn("keyword argument max_value is deprecated and renamed to max_val") max_val = max_value self.min_val = min_val self.max_val = max_val self.inplace = inplace assert self.max_val > self.min_val @weak_script_method def forward(self, input): return F.hardtanh(input, self.min_val, self.max_val, self.inplace) def extra_repr(self): inplace_str = ', inplace' if self.inplace else '' return 'min_val={}, max_val={}{}'.format( self.min_val, self.max_val, inplace_str )
[docs]@weak_module class ReLU6(Hardtanh): r"""Applies the element-wise function: .. math:: \text{ReLU6}(x) = \min(\max(0,x), 6) Args: inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/ReLU6.png Examples:: >>> m = nn.ReLU6() >>> input = torch.randn(2) >>> output = m(input) """ def __init__(self, inplace=False): super(ReLU6, self).__init__(0., 6., inplace) def extra_repr(self): inplace_str = 'inplace' if self.inplace else '' return inplace_str
[docs]@weak_module class Sigmoid(Module): r"""Applies the element-wise function: .. math:: \text{Sigmoid}(x) = \frac{1}{1 + \exp(-x)} Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/Sigmoid.png Examples:: >>> m = nn.Sigmoid() >>> input = torch.randn(2) >>> output = m(input) """ @weak_script_method def forward(self, input): return torch.sigmoid(input)
[docs]@weak_module class Tanh(Module): r"""Applies the element-wise function: .. math:: \text{Tanh}(x) = \tanh(x) = \frac{e^x - e^{-x}} {e^x + e^{-x}} Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/Tanh.png Examples:: >>> m = nn.Tanh() >>> input = torch.randn(2) >>> output = m(input) """ @weak_script_method def forward(self, input): return torch.tanh(input)
[docs]@weak_module class ELU(Module): r"""Applies the element-wise function: .. math:: \text{ELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x) - 1)) Args: alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0 inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/ELU.png Examples:: >>> m = nn.ELU() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['alpha', 'inplace'] def __init__(self, alpha=1., inplace=False): super(ELU, self).__init__() self.alpha = alpha self.inplace = inplace @weak_script_method def forward(self, input): return F.elu(input, self.alpha, self.inplace) def extra_repr(self): inplace_str = ', inplace' if self.inplace else '' return 'alpha={}{}'.format(self.alpha, inplace_str)
[docs]@weak_module class CELU(Module): r"""Applies the element-wise function: .. math:: \text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1)) More details can be found in the paper `Continuously Differentiable Exponential Linear Units`_ . Args: alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0 inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/CELU.png Examples:: >>> m = nn.CELU() >>> input = torch.randn(2) >>> output = m(input) .. _`Continuously Differentiable Exponential Linear Units`: https://arxiv.org/abs/1704.07483 """ __constants__ = ['alpha', 'inplace'] def __init__(self, alpha=1., inplace=False): super(CELU, self).__init__() self.alpha = alpha self.inplace = inplace @weak_script_method def forward(self, input): return F.celu(input, self.alpha, self.inplace) def extra_repr(self): inplace_str = ', inplace' if self.inplace else '' return 'alpha={}{}'.format(self.alpha, inplace_str)
[docs]@weak_module class SELU(Module): r"""Applied element-wise, as: .. math:: \text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) with :math:`\alpha = 1.6732632423543772848170429916717` and :math:`\text{scale} = 1.0507009873554804934193349852946`. More details can be found in the paper `Self-Normalizing Neural Networks`_ . Args: inplace (bool, optional): can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/SELU.png Examples:: >>> m = nn.SELU() >>> input = torch.randn(2) >>> output = m(input) .. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515 """ __constants__ = ['inplace'] def __init__(self, inplace=False): super(SELU, self).__init__() self.inplace = inplace @weak_script_method def forward(self, input): return F.selu(input, self.inplace) def extra_repr(self): inplace_str = 'inplace' if self.inplace else '' return inplace_str
@weak_module class GLU(Module): r"""Applies the gated linear unit function :math:`{GLU}(a, b)= a \otimes \sigma(b)` where :math:`a` is the first half of the input matrices and :math:`b` is the second half. Args: dim (int): the dimension on which to split the input. Default: -1 Shape: - Input: :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional dimensions - Output: :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2` Examples:: >>> m = nn.GLU() >>> input = torch.randn(4, 2) >>> output = m(input) """ __constants__ = ['dim'] def __init__(self, dim=-1): super(GLU, self).__init__() self.dim = dim @weak_script_method def forward(self, input): return F.glu(input, self.dim) def extra_repr(self): return 'dim={}'.format(self.dim)
[docs]@weak_module class Hardshrink(Module): r"""Applies the hard shrinkage function element-wise: .. math:: \text{HardShrink}(x) = \begin{cases} x, & \text{ if } x > \lambda \\ x, & \text{ if } x < -\lambda \\ 0, & \text{ otherwise } \end{cases} Args: lambd: the :math:`\lambda` value for the Hardshrink formulation. Default: 0.5 Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/Hardshrink.png Examples:: >>> m = nn.Hardshrink() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['lambd'] def __init__(self, lambd=0.5): super(Hardshrink, self).__init__() self.lambd = lambd @weak_script_method def forward(self, input): return F.hardshrink(input, self.lambd) def extra_repr(self): return '{}'.format(self.lambd)
[docs]@weak_module class LeakyReLU(Module): r"""Applies the element-wise function: .. math:: \text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x) or .. math:: \text{LeakyRELU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ \text{negative\_slope} \times x, & \text{ otherwise } \end{cases} Args: negative_slope: Controls the angle of the negative slope. Default: 1e-2 inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/LeakyReLU.png Examples:: >>> m = nn.LeakyReLU(0.1) >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['inplace', 'negative_slope'] def __init__(self, negative_slope=1e-2, inplace=False): super(LeakyReLU, self).__init__() self.negative_slope = negative_slope self.inplace = inplace @weak_script_method def forward(self, input): return F.leaky_relu(input, self.negative_slope, self.inplace) def extra_repr(self): inplace_str = ', inplace' if self.inplace else '' return 'negative_slope={}{}'.format(self.negative_slope, inplace_str)
[docs]@weak_module class LogSigmoid(Module): r"""Applies the element-wise function: .. math:: \text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right) Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/LogSigmoid.png Examples:: >>> m = nn.LogSigmoid() >>> input = torch.randn(2) >>> output = m(input) """ @weak_script_method def forward(self, input): return F.logsigmoid(input)
[docs]@weak_module class Softplus(Module): r"""Applies the element-wise function: .. math:: \text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive. For numerical stability the implementation reverts to the linear function for inputs above a certain value. Args: beta: the :math:`\beta` value for the Softplus formulation. Default: 1 threshold: values above this revert to a linear function. Default: 20 Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/Softplus.png Examples:: >>> m = nn.Softplus() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['beta', 'threshold'] def __init__(self, beta=1, threshold=20): super(Softplus, self).__init__() self.beta = beta self.threshold = threshold @weak_script_method def forward(self, input): return F.softplus(input, self.beta, self.threshold) def extra_repr(self): return 'beta={}, threshold={}'.format(self.beta, self.threshold)
[docs]@weak_module class Softshrink(Module): r"""Applies the soft shrinkage function elementwise: .. math:: \text{SoftShrinkage}(x) = \begin{cases} x - \lambda, & \text{ if } x > \lambda \\ x + \lambda, & \text{ if } x < -\lambda \\ 0, & \text{ otherwise } \end{cases} Args: lambd: the :math:`\lambda` value for the Softshrink formulation. Default: 0.5 Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/Softshrink.png Examples:: >>> m = nn.Softshrink() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['lambd'] def __init__(self, lambd=0.5): super(Softshrink, self).__init__() self.lambd = lambd @weak_script_method def forward(self, input): return F.softshrink(input, self.lambd) def extra_repr(self): return str(self.lambd)
[docs]@weak_module class MultiheadAttention(Module): r"""Allows the model to jointly attend to information from different representation subspaces. See reference: Attention Is All You Need .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) Args: embed_dim: total dimension of the model num_heads: parallel attention layers, or heads Examples:: >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False): super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): xavier_uniform_(self.in_proj_weight[:self.embed_dim, :]) xavier_uniform_(self.in_proj_weight[self.embed_dim:(self.embed_dim * 2), :]) xavier_uniform_(self.in_proj_weight[(self.embed_dim * 2):, :]) xavier_uniform_(self.out_proj.weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.) constant_(self.out_proj.bias, 0.) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v)
[docs] @weak_script_method def forward(self, query, key, value, key_padding_mask=None, incremental_state=None, need_weights=True, static_kv=False, attn_mask=None): """ Inputs of forward function query: [target length, batch size, embed dim] key: [sequence length, batch size, embed dim] value: [sequence length, batch size, embed dim] key_padding_mask: if True, mask padding based on batch size incremental_state: if provided, previous time steps are cashed need_weights: output attn_output_weights static_kv: key and value are static Outputs of forward function attn_output: [target length, batch size, embed dim] attn_output_weights: [batch size, target length, sequence length] """ qkv_same = query.data_ptr() == key.data_ptr() == value.data_ptr() kv_same = key.data_ptr() == value.data_ptr() tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] assert key.size() == value.size() if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if 'prev_key' in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert kv_same and not qkv_same key = value = None else: saved_state = None if qkv_same: # self-attention q, k, v = self._in_proj_qkv(query) elif kv_same: # encoder-decoder attention q = self._in_proj_q(query) if key is None: assert value is None k = v = None else: k, v = self._in_proj_kv(key) else: q = self._in_proj_q(query) k = self._in_proj_k(key) v = self._in_proj_v(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat( [key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1) q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if 'prev_key' in saved_state: prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: k = torch.cat((prev_key, k), dim=1) if 'prev_value' in saved_state: prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: v = torch.cat((prev_value, v), dim=1) saved_state['prev_key'] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state['prev_value'] = v.view(bsz, self.num_heads, -1, self.head_dim) self._set_input_buffer(incremental_state, saved_state) src_len = k.size(1) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat( [key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1) attn_output_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_output_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf'), ) attn_output_weights = attn_output_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_output_weights = F.softmax( attn_output_weights.float(), dim=-1, dtype=torch.float32 if attn_output_weights.dtype == torch.float16 else attn_output_weights.dtype) attn_output_weights = F.dropout(attn_output_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = self.out_proj(attn_output) if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.sum(dim=1) / self.num_heads else: attn_output_weights = None return attn_output, attn_output_weights
def _in_proj_qkv(self, query): return self._in_proj(query).chunk(3, dim=-1) def _in_proj_kv(self, key): return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1) def _in_proj_q(self, query): return self._in_proj(query, end=self.embed_dim) def _in_proj_k(self, key): return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) def _in_proj_v(self, value): return self._in_proj(value, start=2 * self.embed_dim) def _in_proj(self, input, start=0, end=None): weight = self.in_proj_weight bias = self.in_proj_bias weight = weight[start:end, :] if bias is not None: bias = bias[start:end] return F.linear(input, weight, bias)
[docs]@weak_module class PReLU(Module): r"""Applies the element-wise function: .. math:: \text{PReLU}(x) = \max(0,x) + a * \min(0,x) or .. math:: \text{PReLU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ ax, & \text{ otherwise } \end{cases} Here :math:`a` is a learnable parameter. When called without arguments, `nn.PReLU()` uses a single parameter :math:`a` across all input channels. If called with `nn.PReLU(nChannels)`, a separate :math:`a` is used for each input channel. .. note:: weight decay should not be used when learning :math:`a` for good performance. .. note:: Channel dim is the 2nd dim of input. When input has dims < 2, then there is no channel dim and the number of channels = 1. Args: num_parameters (int): number of :math:`a` to learn. Although it takes an int as input, there is only two values are legitimate: 1, or the number of channels at input. Default: 1 init (float): the initial value of :math:`a`. Default: 0.25 Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input Attributes: weight (Tensor): the learnable weights of shape (:attr:`num_parameters`). .. image:: scripts/activation_images/PReLU.png Examples:: >>> m = nn.PReLU() >>> input = torch.randn(2) >>> output = m(input) """ def __init__(self, num_parameters=1, init=0.25): self.num_parameters = num_parameters super(PReLU, self).__init__() self.weight = Parameter(torch.Tensor(num_parameters).fill_(init)) @weak_script_method def forward(self, input): return F.prelu(input, self.weight) def extra_repr(self): return 'num_parameters={}'.format(self.num_parameters)
[docs]@weak_module class Softsign(Module): r"""Applies the element-wise function: .. math:: \text{SoftSign}(x) = \frac{x}{ 1 + |x|} Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/Softsign.png Examples:: >>> m = nn.Softsign() >>> input = torch.randn(2) >>> output = m(input) """ @weak_script_method def forward(self, input): return F.softsign(input)
[docs]@weak_module class Tanhshrink(Module): r"""Applies the element-wise function: .. math:: \text{Tanhshrink}(x) = x - \text{Tanh}(x) Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. image:: scripts/activation_images/Tanhshrink.png Examples:: >>> m = nn.Tanhshrink() >>> input = torch.randn(2) >>> output = m(input) """ @weak_script_method def forward(self, input): return F.tanhshrink(input)
[docs]@weak_module class Softmin(Module): r"""Applies the Softmin function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range `[0, 1]` and sum to 1. Softmin is defined as: .. math:: \text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)} Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input Arguments: dim (int): A dimension along which Softmin will be computed (so every slice along dim will sum to 1). Returns: a Tensor of the same dimension and shape as the input, with values in the range [0, 1] Examples:: >>> m = nn.Softmin() >>> input = torch.randn(2, 3) >>> output = m(input) """ __constants__ = ['dim'] def __init__(self, dim=None): super(Softmin, self).__init__() self.dim = dim @weak_script_method def forward(self, input): return F.softmin(input, self.dim, _stacklevel=5)
[docs]@weak_module class Softmax(Module): r"""Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0,1] and sum to 1. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input Returns: a Tensor of the same dimension and shape as the input with values in the range [0, 1] Arguments: dim (int): A dimension along which Softmax will be computed (so every slice along dim will sum to 1). .. note:: This module doesn't work directly with NLLLoss, which expects the Log to be computed between the Softmax and itself. Use `LogSoftmax` instead (it's faster and has better numerical properties). Examples:: >>> m = nn.Softmax() >>> input = torch.randn(2, 3) >>> output = m(input) """ __constants__ = ['dim'] def __init__(self, dim=None): super(Softmax, self).__init__() self.dim = dim def __setstate__(self, state): self.__dict__.update(state) if not hasattr(self, 'dim'): self.dim = None @weak_script_method def forward(self, input): return F.softmax(input, self.dim, _stacklevel=5)
[docs]@weak_module class Softmax2d(Module): r"""Applies SoftMax over features to each spatial location. When given an image of ``Channels x Height x Width``, it will apply `Softmax` to each location :math:`(Channels, h_i, w_j)` Shape: - Input: :math:`(N, C, H, W)` - Output: :math:`(N, C, H, W)` (same shape as input) Returns: a Tensor of the same dimension and shape as the input with values in the range [0, 1] Examples:: >>> m = nn.Softmax2d() >>> # you softmax over the 2nd dimension >>> input = torch.randn(2, 3, 12, 13) >>> output = m(input) """ @weak_script_method def forward(self, input): assert input.dim() == 4, 'Softmax2d requires a 4D tensor as input' return F.softmax(input, 1, _stacklevel=5)
[docs]@weak_module class LogSoftmax(Module): r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional input Tensor. The LogSoftmax formulation can be simplified as: .. math:: \text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right) Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input Arguments: dim (int): A dimension along which LogSoftmax will be computed. Returns: a Tensor of the same dimension and shape as the input with values in the range [-inf, 0) Examples:: >>> m = nn.LogSoftmax() >>> input = torch.randn(2, 3) >>> output = m(input) """ __constants__ = ['dim'] def __init__(self, dim=None): super(LogSoftmax, self).__init__() self.dim = dim def __setstate__(self, state): self.__dict__.update(state) if not hasattr(self, 'dim'): self.dim = None @weak_script_method def forward(self, input): return F.log_softmax(input, self.dim, _stacklevel=5)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources